Innate Immune Functions of Astrocytes are Dependent Upon Tumor Necrosis Factor-Alpha
Acute inflammation is a key feature of innate immunity that initiates clearance and repair in infected or damaged tissues. Alternatively, chronic inflammation is implicated in numerous disease processes. The contribution of neuroinflammation to the pathogenesis of neurological conditions, including...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-04, Vol.10 (1), p.7047-7047, Article 7047 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7047 |
---|---|
container_issue | 1 |
container_start_page | 7047 |
container_title | Scientific reports |
container_volume | 10 |
creator | Rodgers, Kyla R. Lin, Yufan Langan, Thomas J. Iwakura, Yoichiro Chou, Richard C. |
description | Acute inflammation is a key feature of innate immunity that initiates clearance and repair in infected or damaged tissues. Alternatively, chronic inflammation is implicated in numerous disease processes. The contribution of neuroinflammation to the pathogenesis of neurological conditions, including infection, traumatic brain injury, and neurodegenerative diseases, has become increasingly evident. Potential drivers of such neuroinflammation include toll-like receptors (TLRs). TLRs confer a wide array of functions on different cell types in the central nervous system (CNS). Importantly, how TLR activation affects astrocyte functioning is unclear. In the present study, we examined the role of TLR2/4 signaling on various astrocyte functions (i.e., proliferation, pro-inflammatory mediator production, regulatory mechanisms, etc) by stimulating astrocytes with potent exogenous TLR2/4 agonist, bacterial lipopolysaccharide (LPS). Newborn astrocytes were derived from WT,
Tnfα
−/−
,
Il1α
−/−
/Il1β
−/−
, and
Tlr2
−/−
/Tlr4
−/−
mice as well as Sprague Dawley rats for all
in vitro
studies. LPS activated mRNA expression of different pro-inflammatory cytokines and chemokines in time- and concentration-dependent manners, and upregulated the proliferation of astrocytes based on increased
3
H-thymidine update. Following LPS-mediated TLR2/4 activation, TNF-α and IL-1β self-regulated and modulated the expression of pro-inflammatory cytokines and chemokines. Polyclonal antibodies against TNF-α suppressed TLR2/4-mediated upregulation of astrocyte proliferation, supporting an autocrine/paracrine role of TNF-α on astrocyte proliferation. Astrocytes perform classical innate immune functions, which contradict the current paradigm that microglia are the main immune effector cells of the CNS. TNF-α plays a pivotal role in the LPS-upregulated astrocyte activation and proliferation, supporting their critical roles in in CNS pathogenesis. |
doi_str_mv | 10.1038/s41598-020-63766-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7184618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395635822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-86af33ece438a04f6e9f5588e14f2e3507c5332da220d8cd07b7e1d0cb0ce3433</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhi0EAkR5AQ7IUi9c0toeO3EulVaUbVdC5bKcLa8zgaDEDnZSibfHy1IKPdQXW5rPn2f8E3LG2RfOQH9NkqtaF0ywooSqLAuxR44Fk6oQIMT-u_MROU3pgeWlRC15fUiOQIDkUFXHZL3y3k5IV8Mwe6TL2bupCz7R0NJFmmJwTxMmaiPS7ziib9BP9HYMnq7nIUT6C10MqUt0ad0UYrHox3v7iRy0tk94-rqfkNvl1fryZ3F982N1ubgunJJsKnRpWwB0KEFbJtsS61YprZHLViAoVjkFIBorBGu0a1i1qZA3zG2YQ5AAJ-TbzjvOmwEbl3uLtjdj7AYbn0ywnflY8d29uQu_TcW1LLnOgotXQQyPM6bJDF1y2PfWY5iTEVCrEpQWIqOf_0Efwhx9Hu-FEoopWWVK7Kjtr6SI7VsznJltbmaXm8m5mZfczFZ9_n6Mtyt_UsoA7ICUS_4O49-3_6N9BguPo2k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395250547</pqid></control><display><type>article</type><title>Innate Immune Functions of Astrocytes are Dependent Upon Tumor Necrosis Factor-Alpha</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodgers, Kyla R. ; Lin, Yufan ; Langan, Thomas J. ; Iwakura, Yoichiro ; Chou, Richard C.</creator><creatorcontrib>Rodgers, Kyla R. ; Lin, Yufan ; Langan, Thomas J. ; Iwakura, Yoichiro ; Chou, Richard C.</creatorcontrib><description>Acute inflammation is a key feature of innate immunity that initiates clearance and repair in infected or damaged tissues. Alternatively, chronic inflammation is implicated in numerous disease processes. The contribution of neuroinflammation to the pathogenesis of neurological conditions, including infection, traumatic brain injury, and neurodegenerative diseases, has become increasingly evident. Potential drivers of such neuroinflammation include toll-like receptors (TLRs). TLRs confer a wide array of functions on different cell types in the central nervous system (CNS). Importantly, how TLR activation affects astrocyte functioning is unclear. In the present study, we examined the role of TLR2/4 signaling on various astrocyte functions (i.e., proliferation, pro-inflammatory mediator production, regulatory mechanisms, etc) by stimulating astrocytes with potent exogenous TLR2/4 agonist, bacterial lipopolysaccharide (LPS). Newborn astrocytes were derived from WT,
Tnfα
−/−
,
Il1α
−/−
/Il1β
−/−
, and
Tlr2
−/−
/Tlr4
−/−
mice as well as Sprague Dawley rats for all
in vitro
studies. LPS activated mRNA expression of different pro-inflammatory cytokines and chemokines in time- and concentration-dependent manners, and upregulated the proliferation of astrocytes based on increased
3
H-thymidine update. Following LPS-mediated TLR2/4 activation, TNF-α and IL-1β self-regulated and modulated the expression of pro-inflammatory cytokines and chemokines. Polyclonal antibodies against TNF-α suppressed TLR2/4-mediated upregulation of astrocyte proliferation, supporting an autocrine/paracrine role of TNF-α on astrocyte proliferation. Astrocytes perform classical innate immune functions, which contradict the current paradigm that microglia are the main immune effector cells of the CNS. TNF-α plays a pivotal role in the LPS-upregulated astrocyte activation and proliferation, supporting their critical roles in in CNS pathogenesis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-63766-2</identifier><identifier>PMID: 32341377</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/21 ; 38/90 ; 631/250/262 ; 631/378/87 ; 64/60 ; Animals ; Astrocytes ; Astrocytes - immunology ; Astrocytes - metabolism ; Autocrine signalling ; Cells, Cultured ; Central nervous system ; Chemokines ; Cytokines ; Effector cells ; Flow Cytometry ; Gene expression ; Humanities and Social Sciences ; IL-1β ; Immune clearance ; Immunity, Innate - genetics ; Immunity, Innate - physiology ; Inflammation ; Innate immunity ; Interleukin 1 ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Lipopolysaccharides ; Mice ; Microglia ; multidisciplinary ; Necrosis ; Neurodegenerative diseases ; Paracrine signalling ; Pathogenesis ; Polyclonal antibodies ; Rats ; Rats, Sprague-Dawley ; Science ; Science (multidisciplinary) ; Thymidine ; TLR2 protein ; TLR4 protein ; Toll-Like Receptor 2 - genetics ; Toll-Like Receptor 2 - metabolism ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - metabolism ; Toll-like receptors ; Traumatic brain injury ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α</subject><ispartof>Scientific reports, 2020-04, Vol.10 (1), p.7047-7047, Article 7047</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-86af33ece438a04f6e9f5588e14f2e3507c5332da220d8cd07b7e1d0cb0ce3433</citedby><cites>FETCH-LOGICAL-c540t-86af33ece438a04f6e9f5588e14f2e3507c5332da220d8cd07b7e1d0cb0ce3433</cites><orcidid>0000-0002-9934-5775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184618/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184618/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32341377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodgers, Kyla R.</creatorcontrib><creatorcontrib>Lin, Yufan</creatorcontrib><creatorcontrib>Langan, Thomas J.</creatorcontrib><creatorcontrib>Iwakura, Yoichiro</creatorcontrib><creatorcontrib>Chou, Richard C.</creatorcontrib><title>Innate Immune Functions of Astrocytes are Dependent Upon Tumor Necrosis Factor-Alpha</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Acute inflammation is a key feature of innate immunity that initiates clearance and repair in infected or damaged tissues. Alternatively, chronic inflammation is implicated in numerous disease processes. The contribution of neuroinflammation to the pathogenesis of neurological conditions, including infection, traumatic brain injury, and neurodegenerative diseases, has become increasingly evident. Potential drivers of such neuroinflammation include toll-like receptors (TLRs). TLRs confer a wide array of functions on different cell types in the central nervous system (CNS). Importantly, how TLR activation affects astrocyte functioning is unclear. In the present study, we examined the role of TLR2/4 signaling on various astrocyte functions (i.e., proliferation, pro-inflammatory mediator production, regulatory mechanisms, etc) by stimulating astrocytes with potent exogenous TLR2/4 agonist, bacterial lipopolysaccharide (LPS). Newborn astrocytes were derived from WT,
Tnfα
−/−
,
Il1α
−/−
/Il1β
−/−
, and
Tlr2
−/−
/Tlr4
−/−
mice as well as Sprague Dawley rats for all
in vitro
studies. LPS activated mRNA expression of different pro-inflammatory cytokines and chemokines in time- and concentration-dependent manners, and upregulated the proliferation of astrocytes based on increased
3
H-thymidine update. Following LPS-mediated TLR2/4 activation, TNF-α and IL-1β self-regulated and modulated the expression of pro-inflammatory cytokines and chemokines. Polyclonal antibodies against TNF-α suppressed TLR2/4-mediated upregulation of astrocyte proliferation, supporting an autocrine/paracrine role of TNF-α on astrocyte proliferation. Astrocytes perform classical innate immune functions, which contradict the current paradigm that microglia are the main immune effector cells of the CNS. TNF-α plays a pivotal role in the LPS-upregulated astrocyte activation and proliferation, supporting their critical roles in in CNS pathogenesis.</description><subject>13/106</subject><subject>13/21</subject><subject>38/90</subject><subject>631/250/262</subject><subject>631/378/87</subject><subject>64/60</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - immunology</subject><subject>Astrocytes - metabolism</subject><subject>Autocrine signalling</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Chemokines</subject><subject>Cytokines</subject><subject>Effector cells</subject><subject>Flow Cytometry</subject><subject>Gene expression</subject><subject>Humanities and Social Sciences</subject><subject>IL-1β</subject><subject>Immune clearance</subject><subject>Immunity, Innate - genetics</subject><subject>Immunity, Innate - physiology</subject><subject>Inflammation</subject><subject>Innate immunity</subject><subject>Interleukin 1</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Lipopolysaccharides</subject><subject>Mice</subject><subject>Microglia</subject><subject>multidisciplinary</subject><subject>Necrosis</subject><subject>Neurodegenerative diseases</subject><subject>Paracrine signalling</subject><subject>Pathogenesis</subject><subject>Polyclonal antibodies</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thymidine</subject><subject>TLR2 protein</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 2 - genetics</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>Toll-like receptors</subject><subject>Traumatic brain injury</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFO3DAQhi0EAkR5AQ7IUi9c0toeO3EulVaUbVdC5bKcLa8zgaDEDnZSibfHy1IKPdQXW5rPn2f8E3LG2RfOQH9NkqtaF0ywooSqLAuxR44Fk6oQIMT-u_MROU3pgeWlRC15fUiOQIDkUFXHZL3y3k5IV8Mwe6TL2bupCz7R0NJFmmJwTxMmaiPS7ziib9BP9HYMnq7nIUT6C10MqUt0ad0UYrHox3v7iRy0tk94-rqfkNvl1fryZ3F982N1ubgunJJsKnRpWwB0KEFbJtsS61YprZHLViAoVjkFIBorBGu0a1i1qZA3zG2YQ5AAJ-TbzjvOmwEbl3uLtjdj7AYbn0ywnflY8d29uQu_TcW1LLnOgotXQQyPM6bJDF1y2PfWY5iTEVCrEpQWIqOf_0Efwhx9Hu-FEoopWWVK7Kjtr6SI7VsznJltbmaXm8m5mZfczFZ9_n6Mtyt_UsoA7ICUS_4O49-3_6N9BguPo2k</recordid><startdate>20200427</startdate><enddate>20200427</enddate><creator>Rodgers, Kyla R.</creator><creator>Lin, Yufan</creator><creator>Langan, Thomas J.</creator><creator>Iwakura, Yoichiro</creator><creator>Chou, Richard C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9934-5775</orcidid></search><sort><creationdate>20200427</creationdate><title>Innate Immune Functions of Astrocytes are Dependent Upon Tumor Necrosis Factor-Alpha</title><author>Rodgers, Kyla R. ; Lin, Yufan ; Langan, Thomas J. ; Iwakura, Yoichiro ; Chou, Richard C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-86af33ece438a04f6e9f5588e14f2e3507c5332da220d8cd07b7e1d0cb0ce3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/106</topic><topic>13/21</topic><topic>38/90</topic><topic>631/250/262</topic><topic>631/378/87</topic><topic>64/60</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - immunology</topic><topic>Astrocytes - metabolism</topic><topic>Autocrine signalling</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Chemokines</topic><topic>Cytokines</topic><topic>Effector cells</topic><topic>Flow Cytometry</topic><topic>Gene expression</topic><topic>Humanities and Social Sciences</topic><topic>IL-1β</topic><topic>Immune clearance</topic><topic>Immunity, Innate - genetics</topic><topic>Immunity, Innate - physiology</topic><topic>Inflammation</topic><topic>Innate immunity</topic><topic>Interleukin 1</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Lipopolysaccharides</topic><topic>Mice</topic><topic>Microglia</topic><topic>multidisciplinary</topic><topic>Necrosis</topic><topic>Neurodegenerative diseases</topic><topic>Paracrine signalling</topic><topic>Pathogenesis</topic><topic>Polyclonal antibodies</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thymidine</topic><topic>TLR2 protein</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 2 - genetics</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>Toll-like receptors</topic><topic>Traumatic brain injury</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodgers, Kyla R.</creatorcontrib><creatorcontrib>Lin, Yufan</creatorcontrib><creatorcontrib>Langan, Thomas J.</creatorcontrib><creatorcontrib>Iwakura, Yoichiro</creatorcontrib><creatorcontrib>Chou, Richard C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodgers, Kyla R.</au><au>Lin, Yufan</au><au>Langan, Thomas J.</au><au>Iwakura, Yoichiro</au><au>Chou, Richard C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innate Immune Functions of Astrocytes are Dependent Upon Tumor Necrosis Factor-Alpha</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-04-27</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>7047</spage><epage>7047</epage><pages>7047-7047</pages><artnum>7047</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Acute inflammation is a key feature of innate immunity that initiates clearance and repair in infected or damaged tissues. Alternatively, chronic inflammation is implicated in numerous disease processes. The contribution of neuroinflammation to the pathogenesis of neurological conditions, including infection, traumatic brain injury, and neurodegenerative diseases, has become increasingly evident. Potential drivers of such neuroinflammation include toll-like receptors (TLRs). TLRs confer a wide array of functions on different cell types in the central nervous system (CNS). Importantly, how TLR activation affects astrocyte functioning is unclear. In the present study, we examined the role of TLR2/4 signaling on various astrocyte functions (i.e., proliferation, pro-inflammatory mediator production, regulatory mechanisms, etc) by stimulating astrocytes with potent exogenous TLR2/4 agonist, bacterial lipopolysaccharide (LPS). Newborn astrocytes were derived from WT,
Tnfα
−/−
,
Il1α
−/−
/Il1β
−/−
, and
Tlr2
−/−
/Tlr4
−/−
mice as well as Sprague Dawley rats for all
in vitro
studies. LPS activated mRNA expression of different pro-inflammatory cytokines and chemokines in time- and concentration-dependent manners, and upregulated the proliferation of astrocytes based on increased
3
H-thymidine update. Following LPS-mediated TLR2/4 activation, TNF-α and IL-1β self-regulated and modulated the expression of pro-inflammatory cytokines and chemokines. Polyclonal antibodies against TNF-α suppressed TLR2/4-mediated upregulation of astrocyte proliferation, supporting an autocrine/paracrine role of TNF-α on astrocyte proliferation. Astrocytes perform classical innate immune functions, which contradict the current paradigm that microglia are the main immune effector cells of the CNS. TNF-α plays a pivotal role in the LPS-upregulated astrocyte activation and proliferation, supporting their critical roles in in CNS pathogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32341377</pmid><doi>10.1038/s41598-020-63766-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9934-5775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-04, Vol.10 (1), p.7047-7047, Article 7047 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7184618 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 13/106 13/21 38/90 631/250/262 631/378/87 64/60 Animals Astrocytes Astrocytes - immunology Astrocytes - metabolism Autocrine signalling Cells, Cultured Central nervous system Chemokines Cytokines Effector cells Flow Cytometry Gene expression Humanities and Social Sciences IL-1β Immune clearance Immunity, Innate - genetics Immunity, Innate - physiology Inflammation Innate immunity Interleukin 1 Interleukin-1beta - genetics Interleukin-1beta - metabolism Lipopolysaccharides Mice Microglia multidisciplinary Necrosis Neurodegenerative diseases Paracrine signalling Pathogenesis Polyclonal antibodies Rats Rats, Sprague-Dawley Science Science (multidisciplinary) Thymidine TLR2 protein TLR4 protein Toll-Like Receptor 2 - genetics Toll-Like Receptor 2 - metabolism Toll-Like Receptor 4 - genetics Toll-Like Receptor 4 - metabolism Toll-like receptors Traumatic brain injury Tumor Necrosis Factor-alpha - genetics Tumor Necrosis Factor-alpha - metabolism Tumor necrosis factor-TNF Tumor necrosis factor-α |
title | Innate Immune Functions of Astrocytes are Dependent Upon Tumor Necrosis Factor-Alpha |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innate%20Immune%20Functions%20of%20Astrocytes%20are%20Dependent%20Upon%20Tumor%20Necrosis%20Factor-Alpha&rft.jtitle=Scientific%20reports&rft.au=Rodgers,%20Kyla%20R.&rft.date=2020-04-27&rft.volume=10&rft.issue=1&rft.spage=7047&rft.epage=7047&rft.pages=7047-7047&rft.artnum=7047&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-63766-2&rft_dat=%3Cproquest_pubme%3E2395635822%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395250547&rft_id=info:pmid/32341377&rfr_iscdi=true |