Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds
Although autografts are considered to be the gold standard treatment for reconstruction of large bone defects resulting from trauma or diseases, donor site morbidity and limited availability restrict their use. Successful bone repair also depends on sufficient vascularization and to address this cha...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-04, Vol.10 (1), p.7068, Article 7068 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 7068 |
container_title | Scientific reports |
container_volume | 10 |
creator | Vidal, Luciano Kampleitner, Carina Krissian, Stéphanie Brennan, Meadhbh Á Hoffmann, Oskar Raymond, Yago Maazouz, Yassine Ginebra, Maria-Pau Rosset, Philippe Layrolle, Pierre |
description | Although autografts are considered to be the gold standard treatment for reconstruction of large bone defects resulting from trauma or diseases, donor site morbidity and limited availability restrict their use. Successful bone repair also depends on sufficient vascularization and to address this challenge, novel strategies focus on the development of vascularized biomaterial scaffolds. This pilot study aimed to investigate the feasibility of regenerating large bone defects in sheep using 3D-printed customized calcium phosphate scaffolds with or without surgical vascularization. Pre-operative computed tomography scans were performed to visualize the metatarsus and vasculature and to fabricate customized scaffolds and surgical guides by 3D printing. Critical-sized segmental defects created in the mid-diaphyseal region of the metatarsus were either left empty or treated with the 3D scaffold alone or in combination with an axial vascular pedicle. Bone regeneration was evaluated 1, 2 and 3 months post-implantation. After 3 months, the untreated defect remained non-bridged while the 3D scaffold guided bone regeneration. The presence of the vascular pedicle further enhanced bone formation. Histology confirmed bone growth inside the porous 3D scaffolds with or without vascular pedicle inclusion. Taken together, this pilot study demonstrated the feasibility of precised pre-surgical planning and reconstruction of large bone defects with 3D-printed personalized scaffolds. |
doi_str_mv | 10.1038/s41598-020-63742-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7184564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395249232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-9edd19db338c63e2b37e11701239ea05c61fbc475ff4a8ec4e4210d46435d3f23</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCIVtv-AQ7IEicOAX_m44JUtYUirVQJwdny2s-bVEkcbGdXcOpPx7sppXDAFz_bM_PeeBB6Rck7Snj9Pgoqm7ogjBQlrwQr9s_QKSNCFowz9vxJfYLOY7wjeUnWCNq8RCeccUGFbE7R_RfYwghBp86P2DscYTvAmHSPLTgwKeJuxAMknXSIczxCWoAJ77vU4p2OZu516H6CxXq02Mwx-eF45FfFFLox5dLo3nTzgKfWx6nVCXA02jnf23iGXjjdRzh_2Ffo28frr5c3xfr20-fLi3VhZElT0YC1tLEbzmtTcmAbXgGlFaGMN6CJNCV1GyMq6ZzQNRgBglFiRSm4tNwxvkIfFt1p3gxgTfYYdK_yhIMOP5TXnfr7ZexatfU7VdFayCyzQm8XgfYf2s3FWh3uiKgIp0TsaMa-eWgW_PcZYlJ3fg5j9qfyvJKJJgeTUWxBmeBjDOAeZSlRh5DVErLKIatjyGqfSa-f-nik_I40A_gCiIff30L40_s_sr8AS5G1ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395249232</pqid></control><display><type>article</type><title>Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Vidal, Luciano ; Kampleitner, Carina ; Krissian, Stéphanie ; Brennan, Meadhbh Á ; Hoffmann, Oskar ; Raymond, Yago ; Maazouz, Yassine ; Ginebra, Maria-Pau ; Rosset, Philippe ; Layrolle, Pierre</creator><creatorcontrib>Vidal, Luciano ; Kampleitner, Carina ; Krissian, Stéphanie ; Brennan, Meadhbh Á ; Hoffmann, Oskar ; Raymond, Yago ; Maazouz, Yassine ; Ginebra, Maria-Pau ; Rosset, Philippe ; Layrolle, Pierre</creatorcontrib><description>Although autografts are considered to be the gold standard treatment for reconstruction of large bone defects resulting from trauma or diseases, donor site morbidity and limited availability restrict their use. Successful bone repair also depends on sufficient vascularization and to address this challenge, novel strategies focus on the development of vascularized biomaterial scaffolds. This pilot study aimed to investigate the feasibility of regenerating large bone defects in sheep using 3D-printed customized calcium phosphate scaffolds with or without surgical vascularization. Pre-operative computed tomography scans were performed to visualize the metatarsus and vasculature and to fabricate customized scaffolds and surgical guides by 3D printing. Critical-sized segmental defects created in the mid-diaphyseal region of the metatarsus were either left empty or treated with the 3D scaffold alone or in combination with an axial vascular pedicle. Bone regeneration was evaluated 1, 2 and 3 months post-implantation. After 3 months, the untreated defect remained non-bridged while the 3D scaffold guided bone regeneration. The presence of the vascular pedicle further enhanced bone formation. Histology confirmed bone growth inside the porous 3D scaffolds with or without vascular pedicle inclusion. Taken together, this pilot study demonstrated the feasibility of precised pre-surgical planning and reconstruction of large bone defects with 3D-printed personalized scaffolds.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-63742-w</identifier><identifier>PMID: 32341459</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/107 ; 639/301/54/990 ; 692/308/575 ; Animals ; Autografts ; Axial skeleton ; Biocompatible Materials - chemistry ; Bioengineering ; Biomaterials ; Bone growth ; Bone healing ; Bone Regeneration - physiology ; Calcium phosphates ; Calcium Phosphates - chemistry ; Computed tomography ; Defects ; Feasibility studies ; Histology ; Humanities and Social Sciences ; Life Sciences ; Metatarsus ; Metatarsus - surgery ; Morbidity ; multidisciplinary ; Osteogenesis ; Pilot Projects ; Printing, Three-Dimensional ; Regeneration ; Science ; Science (multidisciplinary) ; Sheep ; Tissue Scaffolds - chemistry ; Trauma ; Vascularization</subject><ispartof>Scientific reports, 2020-04, Vol.10 (1), p.7068, Article 7068</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-9edd19db338c63e2b37e11701239ea05c61fbc475ff4a8ec4e4210d46435d3f23</citedby><cites>FETCH-LOGICAL-c561t-9edd19db338c63e2b37e11701239ea05c61fbc475ff4a8ec4e4210d46435d3f23</cites><orcidid>0000-0001-8302-3002 ; 0000-0001-9800-5210 ; 0000-0002-4135-8792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184564/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184564/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32341459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04703104$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidal, Luciano</creatorcontrib><creatorcontrib>Kampleitner, Carina</creatorcontrib><creatorcontrib>Krissian, Stéphanie</creatorcontrib><creatorcontrib>Brennan, Meadhbh Á</creatorcontrib><creatorcontrib>Hoffmann, Oskar</creatorcontrib><creatorcontrib>Raymond, Yago</creatorcontrib><creatorcontrib>Maazouz, Yassine</creatorcontrib><creatorcontrib>Ginebra, Maria-Pau</creatorcontrib><creatorcontrib>Rosset, Philippe</creatorcontrib><creatorcontrib>Layrolle, Pierre</creatorcontrib><title>Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Although autografts are considered to be the gold standard treatment for reconstruction of large bone defects resulting from trauma or diseases, donor site morbidity and limited availability restrict their use. Successful bone repair also depends on sufficient vascularization and to address this challenge, novel strategies focus on the development of vascularized biomaterial scaffolds. This pilot study aimed to investigate the feasibility of regenerating large bone defects in sheep using 3D-printed customized calcium phosphate scaffolds with or without surgical vascularization. Pre-operative computed tomography scans were performed to visualize the metatarsus and vasculature and to fabricate customized scaffolds and surgical guides by 3D printing. Critical-sized segmental defects created in the mid-diaphyseal region of the metatarsus were either left empty or treated with the 3D scaffold alone or in combination with an axial vascular pedicle. Bone regeneration was evaluated 1, 2 and 3 months post-implantation. After 3 months, the untreated defect remained non-bridged while the 3D scaffold guided bone regeneration. The presence of the vascular pedicle further enhanced bone formation. Histology confirmed bone growth inside the porous 3D scaffolds with or without vascular pedicle inclusion. Taken together, this pilot study demonstrated the feasibility of precised pre-surgical planning and reconstruction of large bone defects with 3D-printed personalized scaffolds.</description><subject>13/107</subject><subject>639/301/54/990</subject><subject>692/308/575</subject><subject>Animals</subject><subject>Autografts</subject><subject>Axial skeleton</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone Regeneration - physiology</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Computed tomography</subject><subject>Defects</subject><subject>Feasibility studies</subject><subject>Histology</subject><subject>Humanities and Social Sciences</subject><subject>Life Sciences</subject><subject>Metatarsus</subject><subject>Metatarsus - surgery</subject><subject>Morbidity</subject><subject>multidisciplinary</subject><subject>Osteogenesis</subject><subject>Pilot Projects</subject><subject>Printing, Three-Dimensional</subject><subject>Regeneration</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sheep</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Trauma</subject><subject>Vascularization</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UU1v1DAUtBCIVtv-AQ7IEicOAX_m44JUtYUirVQJwdny2s-bVEkcbGdXcOpPx7sppXDAFz_bM_PeeBB6Rck7Snj9Pgoqm7ogjBQlrwQr9s_QKSNCFowz9vxJfYLOY7wjeUnWCNq8RCeccUGFbE7R_RfYwghBp86P2DscYTvAmHSPLTgwKeJuxAMknXSIczxCWoAJ77vU4p2OZu516H6CxXq02Mwx-eF45FfFFLox5dLo3nTzgKfWx6nVCXA02jnf23iGXjjdRzh_2Ffo28frr5c3xfr20-fLi3VhZElT0YC1tLEbzmtTcmAbXgGlFaGMN6CJNCV1GyMq6ZzQNRgBglFiRSm4tNwxvkIfFt1p3gxgTfYYdK_yhIMOP5TXnfr7ZexatfU7VdFayCyzQm8XgfYf2s3FWh3uiKgIp0TsaMa-eWgW_PcZYlJ3fg5j9qfyvJKJJgeTUWxBmeBjDOAeZSlRh5DVErLKIatjyGqfSa-f-nik_I40A_gCiIff30L40_s_sr8AS5G1ag</recordid><startdate>20200427</startdate><enddate>20200427</enddate><creator>Vidal, Luciano</creator><creator>Kampleitner, Carina</creator><creator>Krissian, Stéphanie</creator><creator>Brennan, Meadhbh Á</creator><creator>Hoffmann, Oskar</creator><creator>Raymond, Yago</creator><creator>Maazouz, Yassine</creator><creator>Ginebra, Maria-Pau</creator><creator>Rosset, Philippe</creator><creator>Layrolle, Pierre</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8302-3002</orcidid><orcidid>https://orcid.org/0000-0001-9800-5210</orcidid><orcidid>https://orcid.org/0000-0002-4135-8792</orcidid></search><sort><creationdate>20200427</creationdate><title>Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds</title><author>Vidal, Luciano ; Kampleitner, Carina ; Krissian, Stéphanie ; Brennan, Meadhbh Á ; Hoffmann, Oskar ; Raymond, Yago ; Maazouz, Yassine ; Ginebra, Maria-Pau ; Rosset, Philippe ; Layrolle, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-9edd19db338c63e2b37e11701239ea05c61fbc475ff4a8ec4e4210d46435d3f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/107</topic><topic>639/301/54/990</topic><topic>692/308/575</topic><topic>Animals</topic><topic>Autografts</topic><topic>Axial skeleton</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone Regeneration - physiology</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Computed tomography</topic><topic>Defects</topic><topic>Feasibility studies</topic><topic>Histology</topic><topic>Humanities and Social Sciences</topic><topic>Life Sciences</topic><topic>Metatarsus</topic><topic>Metatarsus - surgery</topic><topic>Morbidity</topic><topic>multidisciplinary</topic><topic>Osteogenesis</topic><topic>Pilot Projects</topic><topic>Printing, Three-Dimensional</topic><topic>Regeneration</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sheep</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Trauma</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidal, Luciano</creatorcontrib><creatorcontrib>Kampleitner, Carina</creatorcontrib><creatorcontrib>Krissian, Stéphanie</creatorcontrib><creatorcontrib>Brennan, Meadhbh Á</creatorcontrib><creatorcontrib>Hoffmann, Oskar</creatorcontrib><creatorcontrib>Raymond, Yago</creatorcontrib><creatorcontrib>Maazouz, Yassine</creatorcontrib><creatorcontrib>Ginebra, Maria-Pau</creatorcontrib><creatorcontrib>Rosset, Philippe</creatorcontrib><creatorcontrib>Layrolle, Pierre</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidal, Luciano</au><au>Kampleitner, Carina</au><au>Krissian, Stéphanie</au><au>Brennan, Meadhbh Á</au><au>Hoffmann, Oskar</au><au>Raymond, Yago</au><au>Maazouz, Yassine</au><au>Ginebra, Maria-Pau</au><au>Rosset, Philippe</au><au>Layrolle, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-04-27</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>7068</spage><pages>7068-</pages><artnum>7068</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Although autografts are considered to be the gold standard treatment for reconstruction of large bone defects resulting from trauma or diseases, donor site morbidity and limited availability restrict their use. Successful bone repair also depends on sufficient vascularization and to address this challenge, novel strategies focus on the development of vascularized biomaterial scaffolds. This pilot study aimed to investigate the feasibility of regenerating large bone defects in sheep using 3D-printed customized calcium phosphate scaffolds with or without surgical vascularization. Pre-operative computed tomography scans were performed to visualize the metatarsus and vasculature and to fabricate customized scaffolds and surgical guides by 3D printing. Critical-sized segmental defects created in the mid-diaphyseal region of the metatarsus were either left empty or treated with the 3D scaffold alone or in combination with an axial vascular pedicle. Bone regeneration was evaluated 1, 2 and 3 months post-implantation. After 3 months, the untreated defect remained non-bridged while the 3D scaffold guided bone regeneration. The presence of the vascular pedicle further enhanced bone formation. Histology confirmed bone growth inside the porous 3D scaffolds with or without vascular pedicle inclusion. Taken together, this pilot study demonstrated the feasibility of precised pre-surgical planning and reconstruction of large bone defects with 3D-printed personalized scaffolds.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32341459</pmid><doi>10.1038/s41598-020-63742-w</doi><orcidid>https://orcid.org/0000-0001-8302-3002</orcidid><orcidid>https://orcid.org/0000-0001-9800-5210</orcidid><orcidid>https://orcid.org/0000-0002-4135-8792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-04, Vol.10 (1), p.7068, Article 7068 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7184564 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13/107 639/301/54/990 692/308/575 Animals Autografts Axial skeleton Biocompatible Materials - chemistry Bioengineering Biomaterials Bone growth Bone healing Bone Regeneration - physiology Calcium phosphates Calcium Phosphates - chemistry Computed tomography Defects Feasibility studies Histology Humanities and Social Sciences Life Sciences Metatarsus Metatarsus - surgery Morbidity multidisciplinary Osteogenesis Pilot Projects Printing, Three-Dimensional Regeneration Science Science (multidisciplinary) Sheep Tissue Scaffolds - chemistry Trauma Vascularization |
title | Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regeneration%20of%20segmental%20defects%20in%20metatarsus%20of%20sheep%20with%20vascularized%20and%20customized%203D-printed%20calcium%20phosphate%20scaffolds&rft.jtitle=Scientific%20reports&rft.au=Vidal,%20Luciano&rft.date=2020-04-27&rft.volume=10&rft.issue=1&rft.spage=7068&rft.pages=7068-&rft.artnum=7068&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-63742-w&rft_dat=%3Cproquest_pubme%3E2395249232%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395249232&rft_id=info:pmid/32341459&rfr_iscdi=true |