Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins
A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapi...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2020-03, Vol.31 (5), p.335-347 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 5 |
container_start_page | 335 |
container_title | Molecular biology of the cell |
container_volume | 31 |
creator | Pollard, Luther W Garabedian, Mikael V Alioto, Salvatore L Shekhar, Shashank Goode, Bruce L |
description | A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on
actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved
proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells. |
doi_str_mv | 10.1091/mbc.E19-10-0576 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335182292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-f01312f6ee5170efc515511670afc343d5f97e9de61a255295e5b5e1835a2d353</originalsourceid><addsrcrecordid>eNpVkUFr3DAQRkVJadK0596Kjrk40Ugee3UphJBsC4Ee2p6FVh41KrblSvLC_vtoSRrSk0aab94IHmOfQFyC0HA17dzlLegGRCOw796wM9BKNy1uupNaC6wtlO0pe5_zHyGgbbv-HTtVoEH1KM5Y2tJMJTg7jgce5ryEREMt-D6UFHkiF-dcQllLiDOPnv-wzj3YFKeDo8wdJdqHHCxx60odc3Y31ndfAzzTnma-rCn4UKFLioXqig_srbdjpo_P5zn7dXf78-Zrc_99--3m-r5xCmVpvAAF0ndECL0g7xAQAbpeWO9Uqwb0uic9UAdWIkqNhDsk2Ci0clCoztmXJ-6y7iYaHM0l2dEsKUw2HUy0wfzfmcOD-R33pq-MXqsKuHgGpPh3pVzMFLKjcbQzxTUbqRTCRkota_TqKepSzDmRf1kDwhxNmWrKVFPH-9FUnfj8-ncv-X9q1CPAC5L9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335182292</pqid></control><display><type>article</type><title>Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pollard, Luther W ; Garabedian, Mikael V ; Alioto, Salvatore L ; Shekhar, Shashank ; Goode, Bruce L</creator><contributor>Chang, Fred</contributor><creatorcontrib>Pollard, Luther W ; Garabedian, Mikael V ; Alioto, Salvatore L ; Shekhar, Shashank ; Goode, Bruce L ; Chang, Fred</creatorcontrib><description>A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on
actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved
proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E19-10-0576</identifier><identifier>PMID: 31913750</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Actins - metabolism ; Brief Reports ; Mutation - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - isolation & purification ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Molecular biology of the cell, 2020-03, Vol.31 (5), p.335-347</ispartof><rights>2020 Pollard “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-f01312f6ee5170efc515511670afc343d5f97e9de61a255295e5b5e1835a2d353</citedby><cites>FETCH-LOGICAL-c352t-f01312f6ee5170efc515511670afc343d5f97e9de61a255295e5b5e1835a2d353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183793/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183793/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31913750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chang, Fred</contributor><creatorcontrib>Pollard, Luther W</creatorcontrib><creatorcontrib>Garabedian, Mikael V</creatorcontrib><creatorcontrib>Alioto, Salvatore L</creatorcontrib><creatorcontrib>Shekhar, Shashank</creatorcontrib><creatorcontrib>Goode, Bruce L</creatorcontrib><title>Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on
actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved
proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.</description><subject>Actins - metabolism</subject><subject>Brief Reports</subject><subject>Mutation - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - isolation & purification</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFr3DAQRkVJadK0596Kjrk40Ugee3UphJBsC4Ee2p6FVh41KrblSvLC_vtoSRrSk0aab94IHmOfQFyC0HA17dzlLegGRCOw796wM9BKNy1uupNaC6wtlO0pe5_zHyGgbbv-HTtVoEH1KM5Y2tJMJTg7jgce5ryEREMt-D6UFHkiF-dcQllLiDOPnv-wzj3YFKeDo8wdJdqHHCxx60odc3Y31ndfAzzTnma-rCn4UKFLioXqig_srbdjpo_P5zn7dXf78-Zrc_99--3m-r5xCmVpvAAF0ndECL0g7xAQAbpeWO9Uqwb0uic9UAdWIkqNhDsk2Ci0clCoztmXJ-6y7iYaHM0l2dEsKUw2HUy0wfzfmcOD-R33pq-MXqsKuHgGpPh3pVzMFLKjcbQzxTUbqRTCRkota_TqKepSzDmRf1kDwhxNmWrKVFPH-9FUnfj8-ncv-X9q1CPAC5L9</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Pollard, Luther W</creator><creator>Garabedian, Mikael V</creator><creator>Alioto, Salvatore L</creator><creator>Shekhar, Shashank</creator><creator>Goode, Bruce L</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins</title><author>Pollard, Luther W ; Garabedian, Mikael V ; Alioto, Salvatore L ; Shekhar, Shashank ; Goode, Bruce L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-f01312f6ee5170efc515511670afc343d5f97e9de61a255295e5b5e1835a2d353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actins - metabolism</topic><topic>Brief Reports</topic><topic>Mutation - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - isolation & purification</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollard, Luther W</creatorcontrib><creatorcontrib>Garabedian, Mikael V</creatorcontrib><creatorcontrib>Alioto, Salvatore L</creatorcontrib><creatorcontrib>Shekhar, Shashank</creatorcontrib><creatorcontrib>Goode, Bruce L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollard, Luther W</au><au>Garabedian, Mikael V</au><au>Alioto, Salvatore L</au><au>Shekhar, Shashank</au><au>Goode, Bruce L</au><au>Chang, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>31</volume><issue>5</issue><spage>335</spage><epage>347</epage><pages>335-347</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on
actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved
proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>31913750</pmid><doi>10.1091/mbc.E19-10-0576</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2020-03, Vol.31 (5), p.335-347 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183793 |
source | MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Actins - metabolism Brief Reports Mutation - genetics Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - isolation & purification Saccharomyces cerevisiae Proteins - metabolism |
title | Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20inspired%20in%20vitro%20reconstitution%20of%20Saccharomyces%20cerevisiae%20actin%20cables%20from%20seven%20purified%20proteins&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Pollard,%20Luther%20W&rft.date=2020-03-01&rft.volume=31&rft.issue=5&rft.spage=335&rft.epage=347&rft.pages=335-347&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E19-10-0576&rft_dat=%3Cproquest_pubme%3E2335182292%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335182292&rft_id=info:pmid/31913750&rfr_iscdi=true |