Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins

A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2020-03, Vol.31 (5), p.335-347
Hauptverfasser: Pollard, Luther W, Garabedian, Mikael V, Alioto, Salvatore L, Shekhar, Shashank, Goode, Bruce L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 5
container_start_page 335
container_title Molecular biology of the cell
container_volume 31
creator Pollard, Luther W
Garabedian, Mikael V
Alioto, Salvatore L
Shekhar, Shashank
Goode, Bruce L
description A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.
doi_str_mv 10.1091/mbc.E19-10-0576
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335182292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-f01312f6ee5170efc515511670afc343d5f97e9de61a255295e5b5e1835a2d353</originalsourceid><addsrcrecordid>eNpVkUFr3DAQRkVJadK0596Kjrk40Ugee3UphJBsC4Ee2p6FVh41KrblSvLC_vtoSRrSk0aab94IHmOfQFyC0HA17dzlLegGRCOw796wM9BKNy1uupNaC6wtlO0pe5_zHyGgbbv-HTtVoEH1KM5Y2tJMJTg7jgce5ryEREMt-D6UFHkiF-dcQllLiDOPnv-wzj3YFKeDo8wdJdqHHCxx60odc3Y31ndfAzzTnma-rCn4UKFLioXqig_srbdjpo_P5zn7dXf78-Zrc_99--3m-r5xCmVpvAAF0ndECL0g7xAQAbpeWO9Uqwb0uic9UAdWIkqNhDsk2Ci0clCoztmXJ-6y7iYaHM0l2dEsKUw2HUy0wfzfmcOD-R33pq-MXqsKuHgGpPh3pVzMFLKjcbQzxTUbqRTCRkota_TqKepSzDmRf1kDwhxNmWrKVFPH-9FUnfj8-ncv-X9q1CPAC5L9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335182292</pqid></control><display><type>article</type><title>Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pollard, Luther W ; Garabedian, Mikael V ; Alioto, Salvatore L ; Shekhar, Shashank ; Goode, Bruce L</creator><contributor>Chang, Fred</contributor><creatorcontrib>Pollard, Luther W ; Garabedian, Mikael V ; Alioto, Salvatore L ; Shekhar, Shashank ; Goode, Bruce L ; Chang, Fred</creatorcontrib><description>A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E19-10-0576</identifier><identifier>PMID: 31913750</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Actins - metabolism ; Brief Reports ; Mutation - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - isolation &amp; purification ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Molecular biology of the cell, 2020-03, Vol.31 (5), p.335-347</ispartof><rights>2020 Pollard “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-f01312f6ee5170efc515511670afc343d5f97e9de61a255295e5b5e1835a2d353</citedby><cites>FETCH-LOGICAL-c352t-f01312f6ee5170efc515511670afc343d5f97e9de61a255295e5b5e1835a2d353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183793/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183793/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31913750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chang, Fred</contributor><creatorcontrib>Pollard, Luther W</creatorcontrib><creatorcontrib>Garabedian, Mikael V</creatorcontrib><creatorcontrib>Alioto, Salvatore L</creatorcontrib><creatorcontrib>Shekhar, Shashank</creatorcontrib><creatorcontrib>Goode, Bruce L</creatorcontrib><title>Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.</description><subject>Actins - metabolism</subject><subject>Brief Reports</subject><subject>Mutation - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - isolation &amp; purification</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFr3DAQRkVJadK0596Kjrk40Ugee3UphJBsC4Ee2p6FVh41KrblSvLC_vtoSRrSk0aab94IHmOfQFyC0HA17dzlLegGRCOw796wM9BKNy1uupNaC6wtlO0pe5_zHyGgbbv-HTtVoEH1KM5Y2tJMJTg7jgce5ryEREMt-D6UFHkiF-dcQllLiDOPnv-wzj3YFKeDo8wdJdqHHCxx60odc3Y31ndfAzzTnma-rCn4UKFLioXqig_srbdjpo_P5zn7dXf78-Zrc_99--3m-r5xCmVpvAAF0ndECL0g7xAQAbpeWO9Uqwb0uic9UAdWIkqNhDsk2Ci0clCoztmXJ-6y7iYaHM0l2dEsKUw2HUy0wfzfmcOD-R33pq-MXqsKuHgGpPh3pVzMFLKjcbQzxTUbqRTCRkota_TqKepSzDmRf1kDwhxNmWrKVFPH-9FUnfj8-ncv-X9q1CPAC5L9</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Pollard, Luther W</creator><creator>Garabedian, Mikael V</creator><creator>Alioto, Salvatore L</creator><creator>Shekhar, Shashank</creator><creator>Goode, Bruce L</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins</title><author>Pollard, Luther W ; Garabedian, Mikael V ; Alioto, Salvatore L ; Shekhar, Shashank ; Goode, Bruce L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-f01312f6ee5170efc515511670afc343d5f97e9de61a255295e5b5e1835a2d353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actins - metabolism</topic><topic>Brief Reports</topic><topic>Mutation - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - isolation &amp; purification</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollard, Luther W</creatorcontrib><creatorcontrib>Garabedian, Mikael V</creatorcontrib><creatorcontrib>Alioto, Salvatore L</creatorcontrib><creatorcontrib>Shekhar, Shashank</creatorcontrib><creatorcontrib>Goode, Bruce L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollard, Luther W</au><au>Garabedian, Mikael V</au><au>Alioto, Salvatore L</au><au>Shekhar, Shashank</au><au>Goode, Bruce L</au><au>Chang, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>31</volume><issue>5</issue><spage>335</spage><epage>347</epage><pages>335-347</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>A major goal of synthetic biology is to define the minimal cellular machinery required to assemble a biological structure in its simplest form. Here, we focused on actin cables, which provide polarized tracks for intracellular transport and maintain defined lengths while continuously undergoing rapid assembly and turnover. Guided by the genetic requirements for proper cable assembly and dynamics, we show that seven evolutionarily conserved proteins (actin, formin, profilin, tropomyosin, capping protein, cofilin, and AIP1) are sufficient to reconstitute the formation of cables that undergo polarized turnover and maintain steady-state lengths similar to actin cables in vivo. Further, the removal of individual proteins from this simple in vitro reconstitution system leads to cable defects that closely approximate in vivo cable phenotypes caused by disrupting the corresponding genes. Thus, a limited set of molecular components is capable of self-organizing into dynamic, micron-scale actin structures with features similar to cables in living cells.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>31913750</pmid><doi>10.1091/mbc.E19-10-0576</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2020-03, Vol.31 (5), p.335-347
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183793
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Actins - metabolism
Brief Reports
Mutation - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - isolation & purification
Saccharomyces cerevisiae Proteins - metabolism
title Genetically inspired in vitro reconstitution of Saccharomyces cerevisiae actin cables from seven purified proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20inspired%20in%20vitro%20reconstitution%20of%20Saccharomyces%20cerevisiae%20actin%20cables%20from%20seven%20purified%20proteins&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Pollard,%20Luther%20W&rft.date=2020-03-01&rft.volume=31&rft.issue=5&rft.spage=335&rft.epage=347&rft.pages=335-347&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E19-10-0576&rft_dat=%3Cproquest_pubme%3E2335182292%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335182292&rft_id=info:pmid/31913750&rfr_iscdi=true