PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation
Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult . The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal tr...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2020-02, Vol.31 (4), p.244-260 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 4 |
container_start_page | 244 |
container_title | Molecular biology of the cell |
container_volume | 31 |
creator | Arnés, Mercedes Romero, Ninovska Casas-Tintó, Sergio Acebes, Ángel Ferrús, Alberto |
description | Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult
. The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal transport, synapse loss, defective climbing ability and olfactory perception, as well as lifespan reduction. The Aβ42-dependent synapse decay does not involve transcriptional changes in the core synaptic protein encoding genes
,
and
. All toxicity features, however, are suppressed by the coexpression of PI3K. Moreover, PI3K activation induces a significant increase of 6E10 and thioflavin-positive amyloid deposits. Mechanistically, we suggest that Aβ42-Ser26 could be a candidate residue for direct or indirect phosphorylation by PI3K. Along with these in vivo experiments, we further analyze Aβ42 toxicity and its suppression by PI3K activation in in vitro assays with SH-SY5Y human neuroblastoma cell cultures, where Aβ42 aggregation into large insoluble deposits is reproduced. Finally, we show that the Aβ42 toxicity syndrome includes the transcriptional shut down of PI3K expression. Taken together, these results uncover a potential novel pharmacological strategy against this disease through the restoration of PI3K activity. |
doi_str_mv | 10.1091/mbc.E19-05-0303 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31877058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3083-c78d8ee74db948e37986c87d866e9bbaa9930c4a16fb96ac149b0ed14a66014c3</originalsourceid><addsrcrecordid>eNpVkEtOwzAQhi0EoqWwZod8gbR27fixQaoqHhWVYAFry6-AURJHcRqp1-IgnImUQgWrGWlmvtH_AXCJ0RQjiWeVsdMbLDOUZ4ggcgTGWBKZ0Vyw46FHucxwPqcjcJbSO0KYUsZPwYhgwTnKxRiYpxV5gNp2odddiDVsWt_7uktw8flB51mo3cZ6B9O21k3ysIwpQV07WOg-tgmGOsVyY0oPdbUtY3DQ-Sam0MEittU38hycFLpM_uKnTsDL7c3z8j5bP96tlot1ZgkSJLNcOOE9p85IKjzhUjAruBOMeWmM1lISZKnGrDCSaYupNMg7TDVjQzBLJuB6z202pvLODilaXaqmDZVutyrqoP5P6vCmXmOvOBaEs_kAmO0Bth1Str443GKkdrrVoFsNuhXK1U73cHH19-Vh_9cv-QJIRH9c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Arnés, Mercedes ; Romero, Ninovska ; Casas-Tintó, Sergio ; Acebes, Ángel ; Ferrús, Alberto</creator><contributor>Forscher, Paul</contributor><creatorcontrib>Arnés, Mercedes ; Romero, Ninovska ; Casas-Tintó, Sergio ; Acebes, Ángel ; Ferrús, Alberto ; Forscher, Paul</creatorcontrib><description>Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult
. The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal transport, synapse loss, defective climbing ability and olfactory perception, as well as lifespan reduction. The Aβ42-dependent synapse decay does not involve transcriptional changes in the core synaptic protein encoding genes
,
and
. All toxicity features, however, are suppressed by the coexpression of PI3K. Moreover, PI3K activation induces a significant increase of 6E10 and thioflavin-positive amyloid deposits. Mechanistically, we suggest that Aβ42-Ser26 could be a candidate residue for direct or indirect phosphorylation by PI3K. Along with these in vivo experiments, we further analyze Aβ42 toxicity and its suppression by PI3K activation in in vitro assays with SH-SY5Y human neuroblastoma cell cultures, where Aβ42 aggregation into large insoluble deposits is reproduced. Finally, we show that the Aβ42 toxicity syndrome includes the transcriptional shut down of PI3K expression. Taken together, these results uncover a potential novel pharmacological strategy against this disease through the restoration of PI3K activity.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E19-05-0303</identifier><identifier>PMID: 31877058</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Alzheimer Disease - chemically induced ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - pharmacology ; Animals ; Animals, Genetically Modified ; Axonal Transport - drug effects ; Brain - drug effects ; Brain - metabolism ; Brain - pathology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Line, Tumor ; Disease Models, Animal ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Longevity - drug effects ; Neurons - drug effects ; Neurons - metabolism ; Neurons - pathology ; Olfactory Perception - drug effects ; Peptide Fragments - chemistry ; Peptide Fragments - pharmacology ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Plaque, Amyloid - chemically induced ; Plaque, Amyloid - genetics ; Plaque, Amyloid - metabolism ; Plaque, Amyloid - pathology ; Protein Aggregates ; R-SNARE Proteins - genetics ; R-SNARE Proteins - metabolism ; Synapses - drug effects ; Synapses - metabolism</subject><ispartof>Molecular biology of the cell, 2020-02, Vol.31 (4), p.244-260</ispartof><rights>2020 Arnés “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3083-c78d8ee74db948e37986c87d866e9bbaa9930c4a16fb96ac149b0ed14a66014c3</citedby><cites>FETCH-LOGICAL-c3083-c78d8ee74db948e37986c87d866e9bbaa9930c4a16fb96ac149b0ed14a66014c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183762/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183762/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31877058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Forscher, Paul</contributor><creatorcontrib>Arnés, Mercedes</creatorcontrib><creatorcontrib>Romero, Ninovska</creatorcontrib><creatorcontrib>Casas-Tintó, Sergio</creatorcontrib><creatorcontrib>Acebes, Ángel</creatorcontrib><creatorcontrib>Ferrús, Alberto</creatorcontrib><title>PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult
. The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal transport, synapse loss, defective climbing ability and olfactory perception, as well as lifespan reduction. The Aβ42-dependent synapse decay does not involve transcriptional changes in the core synaptic protein encoding genes
,
and
. All toxicity features, however, are suppressed by the coexpression of PI3K. Moreover, PI3K activation induces a significant increase of 6E10 and thioflavin-positive amyloid deposits. Mechanistically, we suggest that Aβ42-Ser26 could be a candidate residue for direct or indirect phosphorylation by PI3K. Along with these in vivo experiments, we further analyze Aβ42 toxicity and its suppression by PI3K activation in in vitro assays with SH-SY5Y human neuroblastoma cell cultures, where Aβ42 aggregation into large insoluble deposits is reproduced. Finally, we show that the Aβ42 toxicity syndrome includes the transcriptional shut down of PI3K expression. Taken together, these results uncover a potential novel pharmacological strategy against this disease through the restoration of PI3K activity.</description><subject>Alzheimer Disease - chemically induced</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - pharmacology</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Axonal Transport - drug effects</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Disease Models, Animal</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Longevity - drug effects</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Olfactory Perception - drug effects</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - pharmacology</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Plaque, Amyloid - chemically induced</subject><subject>Plaque, Amyloid - genetics</subject><subject>Plaque, Amyloid - metabolism</subject><subject>Plaque, Amyloid - pathology</subject><subject>Protein Aggregates</subject><subject>R-SNARE Proteins - genetics</subject><subject>R-SNARE Proteins - metabolism</subject><subject>Synapses - drug effects</subject><subject>Synapses - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtOwzAQhi0EoqWwZod8gbR27fixQaoqHhWVYAFry6-AURJHcRqp1-IgnImUQgWrGWlmvtH_AXCJ0RQjiWeVsdMbLDOUZ4ggcgTGWBKZ0Vyw46FHucxwPqcjcJbSO0KYUsZPwYhgwTnKxRiYpxV5gNp2odddiDVsWt_7uktw8flB51mo3cZ6B9O21k3ysIwpQV07WOg-tgmGOsVyY0oPdbUtY3DQ-Sam0MEittU38hycFLpM_uKnTsDL7c3z8j5bP96tlot1ZgkSJLNcOOE9p85IKjzhUjAruBOMeWmM1lISZKnGrDCSaYupNMg7TDVjQzBLJuB6z202pvLODilaXaqmDZVutyrqoP5P6vCmXmOvOBaEs_kAmO0Bth1Str443GKkdrrVoFsNuhXK1U73cHH19-Vh_9cv-QJIRH9c</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Arnés, Mercedes</creator><creator>Romero, Ninovska</creator><creator>Casas-Tintó, Sergio</creator><creator>Acebes, Ángel</creator><creator>Ferrús, Alberto</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20200215</creationdate><title>PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation</title><author>Arnés, Mercedes ; Romero, Ninovska ; Casas-Tintó, Sergio ; Acebes, Ángel ; Ferrús, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3083-c78d8ee74db948e37986c87d866e9bbaa9930c4a16fb96ac149b0ed14a66014c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer Disease - chemically induced</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - pharmacology</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Axonal Transport - drug effects</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Disease Models, Animal</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Longevity - drug effects</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Olfactory Perception - drug effects</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - pharmacology</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Plaque, Amyloid - chemically induced</topic><topic>Plaque, Amyloid - genetics</topic><topic>Plaque, Amyloid - metabolism</topic><topic>Plaque, Amyloid - pathology</topic><topic>Protein Aggregates</topic><topic>R-SNARE Proteins - genetics</topic><topic>R-SNARE Proteins - metabolism</topic><topic>Synapses - drug effects</topic><topic>Synapses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnés, Mercedes</creatorcontrib><creatorcontrib>Romero, Ninovska</creatorcontrib><creatorcontrib>Casas-Tintó, Sergio</creatorcontrib><creatorcontrib>Acebes, Ángel</creatorcontrib><creatorcontrib>Ferrús, Alberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnés, Mercedes</au><au>Romero, Ninovska</au><au>Casas-Tintó, Sergio</au><au>Acebes, Ángel</au><au>Ferrús, Alberto</au><au>Forscher, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2020-02-15</date><risdate>2020</risdate><volume>31</volume><issue>4</issue><spage>244</spage><epage>260</epage><pages>244-260</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult
. The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal transport, synapse loss, defective climbing ability and olfactory perception, as well as lifespan reduction. The Aβ42-dependent synapse decay does not involve transcriptional changes in the core synaptic protein encoding genes
,
and
. All toxicity features, however, are suppressed by the coexpression of PI3K. Moreover, PI3K activation induces a significant increase of 6E10 and thioflavin-positive amyloid deposits. Mechanistically, we suggest that Aβ42-Ser26 could be a candidate residue for direct or indirect phosphorylation by PI3K. Along with these in vivo experiments, we further analyze Aβ42 toxicity and its suppression by PI3K activation in in vitro assays with SH-SY5Y human neuroblastoma cell cultures, where Aβ42 aggregation into large insoluble deposits is reproduced. Finally, we show that the Aβ42 toxicity syndrome includes the transcriptional shut down of PI3K expression. Taken together, these results uncover a potential novel pharmacological strategy against this disease through the restoration of PI3K activity.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>31877058</pmid><doi>10.1091/mbc.E19-05-0303</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2020-02, Vol.31 (4), p.244-260 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183762 |
source | MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alzheimer Disease - chemically induced Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer Disease - pathology Amyloid beta-Peptides - chemistry Amyloid beta-Peptides - pharmacology Animals Animals, Genetically Modified Axonal Transport - drug effects Brain - drug effects Brain - metabolism Brain - pathology Carrier Proteins - genetics Carrier Proteins - metabolism Cell Line, Tumor Disease Models, Animal Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Humans Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism Longevity - drug effects Neurons - drug effects Neurons - metabolism Neurons - pathology Olfactory Perception - drug effects Peptide Fragments - chemistry Peptide Fragments - pharmacology Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - metabolism Phosphorylation Plaque, Amyloid - chemically induced Plaque, Amyloid - genetics Plaque, Amyloid - metabolism Plaque, Amyloid - pathology Protein Aggregates R-SNARE Proteins - genetics R-SNARE Proteins - metabolism Synapses - drug effects Synapses - metabolism |
title | PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PI3K%20activation%20prevents%20A%CE%B242-induced%20synapse%20loss%20and%20favors%20insoluble%20amyloid%20deposit%20formation&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Arn%C3%A9s,%20Mercedes&rft.date=2020-02-15&rft.volume=31&rft.issue=4&rft.spage=244&rft.epage=260&rft.pages=244-260&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E19-05-0303&rft_dat=%3Cpubmed_cross%3E31877058%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31877058&rfr_iscdi=true |