PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation

Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult . The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2020-02, Vol.31 (4), p.244-260
Hauptverfasser: Arnés, Mercedes, Romero, Ninovska, Casas-Tintó, Sergio, Acebes, Ángel, Ferrús, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 4
container_start_page 244
container_title Molecular biology of the cell
container_volume 31
creator Arnés, Mercedes
Romero, Ninovska
Casas-Tintó, Sergio
Acebes, Ángel
Ferrús, Alberto
description Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult . The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal transport, synapse loss, defective climbing ability and olfactory perception, as well as lifespan reduction. The Aβ42-dependent synapse decay does not involve transcriptional changes in the core synaptic protein encoding genes , and . All toxicity features, however, are suppressed by the coexpression of PI3K. Moreover, PI3K activation induces a significant increase of 6E10 and thioflavin-positive amyloid deposits. Mechanistically, we suggest that Aβ42-Ser26 could be a candidate residue for direct or indirect phosphorylation by PI3K. Along with these in vivo experiments, we further analyze Aβ42 toxicity and its suppression by PI3K activation in in vitro assays with SH-SY5Y human neuroblastoma cell cultures, where Aβ42 aggregation into large insoluble deposits is reproduced. Finally, we show that the Aβ42 toxicity syndrome includes the transcriptional shut down of PI3K expression. Taken together, these results uncover a potential novel pharmacological strategy against this disease through the restoration of PI3K activity.
doi_str_mv 10.1091/mbc.E19-05-0303
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31877058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3083-c78d8ee74db948e37986c87d866e9bbaa9930c4a16fb96ac149b0ed14a66014c3</originalsourceid><addsrcrecordid>eNpVkEtOwzAQhi0EoqWwZod8gbR27fixQaoqHhWVYAFry6-AURJHcRqp1-IgnImUQgWrGWlmvtH_AXCJ0RQjiWeVsdMbLDOUZ4ggcgTGWBKZ0Vyw46FHucxwPqcjcJbSO0KYUsZPwYhgwTnKxRiYpxV5gNp2odddiDVsWt_7uktw8flB51mo3cZ6B9O21k3ysIwpQV07WOg-tgmGOsVyY0oPdbUtY3DQ-Sam0MEittU38hycFLpM_uKnTsDL7c3z8j5bP96tlot1ZgkSJLNcOOE9p85IKjzhUjAruBOMeWmM1lISZKnGrDCSaYupNMg7TDVjQzBLJuB6z202pvLODilaXaqmDZVutyrqoP5P6vCmXmOvOBaEs_kAmO0Bth1Str443GKkdrrVoFsNuhXK1U73cHH19-Vh_9cv-QJIRH9c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Arnés, Mercedes ; Romero, Ninovska ; Casas-Tintó, Sergio ; Acebes, Ángel ; Ferrús, Alberto</creator><contributor>Forscher, Paul</contributor><creatorcontrib>Arnés, Mercedes ; Romero, Ninovska ; Casas-Tintó, Sergio ; Acebes, Ángel ; Ferrús, Alberto ; Forscher, Paul</creatorcontrib><description>Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult . The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal transport, synapse loss, defective climbing ability and olfactory perception, as well as lifespan reduction. The Aβ42-dependent synapse decay does not involve transcriptional changes in the core synaptic protein encoding genes , and . All toxicity features, however, are suppressed by the coexpression of PI3K. Moreover, PI3K activation induces a significant increase of 6E10 and thioflavin-positive amyloid deposits. Mechanistically, we suggest that Aβ42-Ser26 could be a candidate residue for direct or indirect phosphorylation by PI3K. Along with these in vivo experiments, we further analyze Aβ42 toxicity and its suppression by PI3K activation in in vitro assays with SH-SY5Y human neuroblastoma cell cultures, where Aβ42 aggregation into large insoluble deposits is reproduced. Finally, we show that the Aβ42 toxicity syndrome includes the transcriptional shut down of PI3K expression. Taken together, these results uncover a potential novel pharmacological strategy against this disease through the restoration of PI3K activity.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E19-05-0303</identifier><identifier>PMID: 31877058</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Alzheimer Disease - chemically induced ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Amyloid beta-Peptides - chemistry ; Amyloid beta-Peptides - pharmacology ; Animals ; Animals, Genetically Modified ; Axonal Transport - drug effects ; Brain - drug effects ; Brain - metabolism ; Brain - pathology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Line, Tumor ; Disease Models, Animal ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Longevity - drug effects ; Neurons - drug effects ; Neurons - metabolism ; Neurons - pathology ; Olfactory Perception - drug effects ; Peptide Fragments - chemistry ; Peptide Fragments - pharmacology ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Plaque, Amyloid - chemically induced ; Plaque, Amyloid - genetics ; Plaque, Amyloid - metabolism ; Plaque, Amyloid - pathology ; Protein Aggregates ; R-SNARE Proteins - genetics ; R-SNARE Proteins - metabolism ; Synapses - drug effects ; Synapses - metabolism</subject><ispartof>Molecular biology of the cell, 2020-02, Vol.31 (4), p.244-260</ispartof><rights>2020 Arnés “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3083-c78d8ee74db948e37986c87d866e9bbaa9930c4a16fb96ac149b0ed14a66014c3</citedby><cites>FETCH-LOGICAL-c3083-c78d8ee74db948e37986c87d866e9bbaa9930c4a16fb96ac149b0ed14a66014c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183762/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183762/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31877058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Forscher, Paul</contributor><creatorcontrib>Arnés, Mercedes</creatorcontrib><creatorcontrib>Romero, Ninovska</creatorcontrib><creatorcontrib>Casas-Tintó, Sergio</creatorcontrib><creatorcontrib>Acebes, Ángel</creatorcontrib><creatorcontrib>Ferrús, Alberto</creatorcontrib><title>PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult . The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal transport, synapse loss, defective climbing ability and olfactory perception, as well as lifespan reduction. The Aβ42-dependent synapse decay does not involve transcriptional changes in the core synaptic protein encoding genes , and . All toxicity features, however, are suppressed by the coexpression of PI3K. Moreover, PI3K activation induces a significant increase of 6E10 and thioflavin-positive amyloid deposits. Mechanistically, we suggest that Aβ42-Ser26 could be a candidate residue for direct or indirect phosphorylation by PI3K. Along with these in vivo experiments, we further analyze Aβ42 toxicity and its suppression by PI3K activation in in vitro assays with SH-SY5Y human neuroblastoma cell cultures, where Aβ42 aggregation into large insoluble deposits is reproduced. Finally, we show that the Aβ42 toxicity syndrome includes the transcriptional shut down of PI3K expression. Taken together, these results uncover a potential novel pharmacological strategy against this disease through the restoration of PI3K activity.</description><subject>Alzheimer Disease - chemically induced</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Amyloid beta-Peptides - chemistry</subject><subject>Amyloid beta-Peptides - pharmacology</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Axonal Transport - drug effects</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Disease Models, Animal</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Longevity - drug effects</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Olfactory Perception - drug effects</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - pharmacology</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Plaque, Amyloid - chemically induced</subject><subject>Plaque, Amyloid - genetics</subject><subject>Plaque, Amyloid - metabolism</subject><subject>Plaque, Amyloid - pathology</subject><subject>Protein Aggregates</subject><subject>R-SNARE Proteins - genetics</subject><subject>R-SNARE Proteins - metabolism</subject><subject>Synapses - drug effects</subject><subject>Synapses - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtOwzAQhi0EoqWwZod8gbR27fixQaoqHhWVYAFry6-AURJHcRqp1-IgnImUQgWrGWlmvtH_AXCJ0RQjiWeVsdMbLDOUZ4ggcgTGWBKZ0Vyw46FHucxwPqcjcJbSO0KYUsZPwYhgwTnKxRiYpxV5gNp2odddiDVsWt_7uktw8flB51mo3cZ6B9O21k3ysIwpQV07WOg-tgmGOsVyY0oPdbUtY3DQ-Sam0MEittU38hycFLpM_uKnTsDL7c3z8j5bP96tlot1ZgkSJLNcOOE9p85IKjzhUjAruBOMeWmM1lISZKnGrDCSaYupNMg7TDVjQzBLJuB6z202pvLODilaXaqmDZVutyrqoP5P6vCmXmOvOBaEs_kAmO0Bth1Str443GKkdrrVoFsNuhXK1U73cHH19-Vh_9cv-QJIRH9c</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Arnés, Mercedes</creator><creator>Romero, Ninovska</creator><creator>Casas-Tintó, Sergio</creator><creator>Acebes, Ángel</creator><creator>Ferrús, Alberto</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20200215</creationdate><title>PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation</title><author>Arnés, Mercedes ; Romero, Ninovska ; Casas-Tintó, Sergio ; Acebes, Ángel ; Ferrús, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3083-c78d8ee74db948e37986c87d866e9bbaa9930c4a16fb96ac149b0ed14a66014c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer Disease - chemically induced</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Amyloid beta-Peptides - chemistry</topic><topic>Amyloid beta-Peptides - pharmacology</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Axonal Transport - drug effects</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Disease Models, Animal</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Longevity - drug effects</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Olfactory Perception - drug effects</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - pharmacology</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Plaque, Amyloid - chemically induced</topic><topic>Plaque, Amyloid - genetics</topic><topic>Plaque, Amyloid - metabolism</topic><topic>Plaque, Amyloid - pathology</topic><topic>Protein Aggregates</topic><topic>R-SNARE Proteins - genetics</topic><topic>R-SNARE Proteins - metabolism</topic><topic>Synapses - drug effects</topic><topic>Synapses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnés, Mercedes</creatorcontrib><creatorcontrib>Romero, Ninovska</creatorcontrib><creatorcontrib>Casas-Tintó, Sergio</creatorcontrib><creatorcontrib>Acebes, Ángel</creatorcontrib><creatorcontrib>Ferrús, Alberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnés, Mercedes</au><au>Romero, Ninovska</au><au>Casas-Tintó, Sergio</au><au>Acebes, Ángel</au><au>Ferrús, Alberto</au><au>Forscher, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2020-02-15</date><risdate>2020</risdate><volume>31</volume><issue>4</issue><spage>244</spage><epage>260</epage><pages>244-260</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>Excess of Aβ42 peptide is considered a hallmark of the disease. Here we express the human Aβ42 peptide to assay the neuroprotective effects of PI3K in adult . The neuronal expression of the human peptide elicits progressive toxicity in the adult fly. The pathological traits include reduced axonal transport, synapse loss, defective climbing ability and olfactory perception, as well as lifespan reduction. The Aβ42-dependent synapse decay does not involve transcriptional changes in the core synaptic protein encoding genes , and . All toxicity features, however, are suppressed by the coexpression of PI3K. Moreover, PI3K activation induces a significant increase of 6E10 and thioflavin-positive amyloid deposits. Mechanistically, we suggest that Aβ42-Ser26 could be a candidate residue for direct or indirect phosphorylation by PI3K. Along with these in vivo experiments, we further analyze Aβ42 toxicity and its suppression by PI3K activation in in vitro assays with SH-SY5Y human neuroblastoma cell cultures, where Aβ42 aggregation into large insoluble deposits is reproduced. Finally, we show that the Aβ42 toxicity syndrome includes the transcriptional shut down of PI3K expression. Taken together, these results uncover a potential novel pharmacological strategy against this disease through the restoration of PI3K activity.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>31877058</pmid><doi>10.1091/mbc.E19-05-0303</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2020-02, Vol.31 (4), p.244-260
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7183762
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alzheimer Disease - chemically induced
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - pharmacology
Animals
Animals, Genetically Modified
Axonal Transport - drug effects
Brain - drug effects
Brain - metabolism
Brain - pathology
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Line, Tumor
Disease Models, Animal
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Humans
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Longevity - drug effects
Neurons - drug effects
Neurons - metabolism
Neurons - pathology
Olfactory Perception - drug effects
Peptide Fragments - chemistry
Peptide Fragments - pharmacology
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Plaque, Amyloid - chemically induced
Plaque, Amyloid - genetics
Plaque, Amyloid - metabolism
Plaque, Amyloid - pathology
Protein Aggregates
R-SNARE Proteins - genetics
R-SNARE Proteins - metabolism
Synapses - drug effects
Synapses - metabolism
title PI3K activation prevents Aβ42-induced synapse loss and favors insoluble amyloid deposit formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PI3K%20activation%20prevents%20A%CE%B242-induced%20synapse%20loss%20and%20favors%20insoluble%20amyloid%20deposit%20formation&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Arn%C3%A9s,%20Mercedes&rft.date=2020-02-15&rft.volume=31&rft.issue=4&rft.spage=244&rft.epage=260&rft.pages=244-260&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E19-05-0303&rft_dat=%3Cpubmed_cross%3E31877058%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31877058&rfr_iscdi=true