Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma
Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types 1 , 2 . Multiple clinical trials with combinatorial immune ch...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2020-01, Vol.26 (1), p.39-46 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Nature medicine |
container_volume | 26 |
creator | Goswami, Sangeeta Walle, Thomas Cornish, Andrew E. Basu, Sreyashi Anandhan, Swetha Fernandez, Irina Vence, Luis Blando, Jorge Zhao, Hao Yadav, Shalini Singh Ott, Martina Kong, Ling Y. Heimberger, Amy B. de Groot, John Sepesi, Boris Overman, Michael Kopetz, Scott Allison, James P. Pe’er, Dana Sharma, Padmanee |
description | Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types
1
,
2
. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73
hi
macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73
−/−
mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.
Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma. |
doi_str_mv | 10.1038/s41591-019-0694-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A611371122</galeid><sourcerecordid>A611371122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c740t-f3c299a28eeadc57ab87d5b2e7ccc70a8c80f7c66d72e84374a694e149161b1d3</originalsourceid><addsrcrecordid>eNqNkt-L1DAQx4so3rn6B_giAUH0oWfStE37cnCsvxYODvyF-BKm6bSbI03WJJX1vzfLnne3coLkIYH5zHcmM98se8roCaO8eR1KVrUsp6zNad2W-fZedsyqss6ZoN_upzcVTd60VX2UPQrhklLKadU-zI44awTntD3Ovq-mabZINt4N2mg7EjeQ9TyBJXGenA9E92ijHjQGsnwjOIFAgCg3ddpCdF6DIRH8iJFoS0ajXWcgRDfB4-zBACbgk6t7kX159_bz8kN-fvF-tTw7z5UoacwHroq2haJBhF5VArpG9FVXoFBKCQqNauggVF33osCm5KKE9FdkZctq1rGeL7LTve5m7ibsVWrXg5Ebryfwv6QDLQ8jVq_l6H5KwZoijTEJvLwS8O7HjCHKSQeFxoBFNwdZpFFxXhWp-CJ7_hd66WZv0_cSVaaJ0jTXG2oEg1LbwaW6aicqz2rGuGCsKBKV30GNaDE16SymfeAhf3IHn06Pk1Z3Jrw6SEhMxG0cYQ5Brj59_H_24ush--IWu0YwcR2cmaN2NhyCbA8q70LwOFwvhVG5c7DcO1gmB8udg-U25Ty7vc3rjD-WTUCxB0IK2RH9zQr-rfob8Lr4bg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343090733</pqid></control><display><type>article</type><title>Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Goswami, Sangeeta ; Walle, Thomas ; Cornish, Andrew E. ; Basu, Sreyashi ; Anandhan, Swetha ; Fernandez, Irina ; Vence, Luis ; Blando, Jorge ; Zhao, Hao ; Yadav, Shalini Singh ; Ott, Martina ; Kong, Ling Y. ; Heimberger, Amy B. ; de Groot, John ; Sepesi, Boris ; Overman, Michael ; Kopetz, Scott ; Allison, James P. ; Pe’er, Dana ; Sharma, Padmanee</creator><creatorcontrib>Goswami, Sangeeta ; Walle, Thomas ; Cornish, Andrew E. ; Basu, Sreyashi ; Anandhan, Swetha ; Fernandez, Irina ; Vence, Luis ; Blando, Jorge ; Zhao, Hao ; Yadav, Shalini Singh ; Ott, Martina ; Kong, Ling Y. ; Heimberger, Amy B. ; de Groot, John ; Sepesi, Boris ; Overman, Michael ; Kopetz, Scott ; Allison, James P. ; Pe’er, Dana ; Sharma, Padmanee</creatorcontrib><description>Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types
1
,
2
. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73
hi
macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73
−/−
mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.
Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-019-0694-x</identifier><identifier>PMID: 31873309</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>5'-Nucleotidase - metabolism ; 631/250/251 ; 631/67/580 ; Algorithms ; Animal models ; Animals ; Antitumor activity ; Biomedical and Life Sciences ; Biomedicine ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - genetics ; Brain Neoplasms - immunology ; Brain Neoplasms - therapy ; Cancer ; Cancer Research ; CD73 antigen ; Cell Line, Tumor ; Clinical trials ; Colorectal carcinoma ; Combinatorial analysis ; CTLA-4 protein ; Cytometry ; Disease Models, Animal ; Drug therapy ; Gene Expression Regulation, Neoplastic ; Gene sequencing ; Glioblastoma ; Glioblastoma - diagnostic imaging ; Glioblastoma - genetics ; Glioblastoma - immunology ; Glioblastoma - therapy ; Glioblastoma multiforme ; GPI-Linked Proteins - metabolism ; Health aspects ; Humans ; Immune checkpoint ; Immune response ; Immunomodulation ; Immunotherapy ; Infectious Diseases ; Letter ; Lymphocytes, Tumor-Infiltrating - immunology ; Macrophages ; Macrophages - metabolism ; Magnetic Resonance Imaging ; Metabolic Diseases ; Methods ; Mice, Inbred C57BL ; Molecular Medicine ; Molecular Targeted Therapy ; Myeloid Cells - metabolism ; Neurosciences ; Nucleotidases ; Patients ; PD-1 protein ; PD-L1 protein ; Physiological aspects ; Prostate cancer ; Receptor antibodies ; Ribonucleic acid ; RNA ; Solid tumors ; Therapy ; Translation ; Tumors</subject><ispartof>Nature medicine, 2020-01, Vol.26 (1), p.39-46</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c740t-f3c299a28eeadc57ab87d5b2e7ccc70a8c80f7c66d72e84374a694e149161b1d3</citedby><cites>FETCH-LOGICAL-c740t-f3c299a28eeadc57ab87d5b2e7ccc70a8c80f7c66d72e84374a694e149161b1d3</cites><orcidid>0000-0002-9970-8695 ; 0000-0003-4658-055X ; 0000-0003-4835-955X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goswami, Sangeeta</creatorcontrib><creatorcontrib>Walle, Thomas</creatorcontrib><creatorcontrib>Cornish, Andrew E.</creatorcontrib><creatorcontrib>Basu, Sreyashi</creatorcontrib><creatorcontrib>Anandhan, Swetha</creatorcontrib><creatorcontrib>Fernandez, Irina</creatorcontrib><creatorcontrib>Vence, Luis</creatorcontrib><creatorcontrib>Blando, Jorge</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><creatorcontrib>Yadav, Shalini Singh</creatorcontrib><creatorcontrib>Ott, Martina</creatorcontrib><creatorcontrib>Kong, Ling Y.</creatorcontrib><creatorcontrib>Heimberger, Amy B.</creatorcontrib><creatorcontrib>de Groot, John</creatorcontrib><creatorcontrib>Sepesi, Boris</creatorcontrib><creatorcontrib>Overman, Michael</creatorcontrib><creatorcontrib>Kopetz, Scott</creatorcontrib><creatorcontrib>Allison, James P.</creatorcontrib><creatorcontrib>Pe’er, Dana</creatorcontrib><creatorcontrib>Sharma, Padmanee</creatorcontrib><title>Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types
1
,
2
. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73
hi
macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73
−/−
mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.
Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma.</description><subject>5'-Nucleotidase - metabolism</subject><subject>631/250/251</subject><subject>631/67/580</subject><subject>Algorithms</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antitumor activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - immunology</subject><subject>Brain Neoplasms - therapy</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>CD73 antigen</subject><subject>Cell Line, Tumor</subject><subject>Clinical trials</subject><subject>Colorectal carcinoma</subject><subject>Combinatorial analysis</subject><subject>CTLA-4 protein</subject><subject>Cytometry</subject><subject>Disease Models, Animal</subject><subject>Drug therapy</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene sequencing</subject><subject>Glioblastoma</subject><subject>Glioblastoma - diagnostic imaging</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - immunology</subject><subject>Glioblastoma - therapy</subject><subject>Glioblastoma multiforme</subject><subject>GPI-Linked Proteins - metabolism</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Immune response</subject><subject>Immunomodulation</subject><subject>Immunotherapy</subject><subject>Infectious Diseases</subject><subject>Letter</subject><subject>Lymphocytes, Tumor-Infiltrating - immunology</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Magnetic Resonance Imaging</subject><subject>Metabolic Diseases</subject><subject>Methods</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Medicine</subject><subject>Molecular Targeted Therapy</subject><subject>Myeloid Cells - metabolism</subject><subject>Neurosciences</subject><subject>Nucleotidases</subject><subject>Patients</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Physiological aspects</subject><subject>Prostate cancer</subject><subject>Receptor antibodies</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Solid tumors</subject><subject>Therapy</subject><subject>Translation</subject><subject>Tumors</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkt-L1DAQx4so3rn6B_giAUH0oWfStE37cnCsvxYODvyF-BKm6bSbI03WJJX1vzfLnne3coLkIYH5zHcmM98se8roCaO8eR1KVrUsp6zNad2W-fZedsyqss6ZoN_upzcVTd60VX2UPQrhklLKadU-zI44awTntD3Ovq-mabZINt4N2mg7EjeQ9TyBJXGenA9E92ijHjQGsnwjOIFAgCg3ddpCdF6DIRH8iJFoS0ajXWcgRDfB4-zBACbgk6t7kX159_bz8kN-fvF-tTw7z5UoacwHroq2haJBhF5VArpG9FVXoFBKCQqNauggVF33osCm5KKE9FdkZctq1rGeL7LTve5m7ibsVWrXg5Ebryfwv6QDLQ8jVq_l6H5KwZoijTEJvLwS8O7HjCHKSQeFxoBFNwdZpFFxXhWp-CJ7_hd66WZv0_cSVaaJ0jTXG2oEg1LbwaW6aicqz2rGuGCsKBKV30GNaDE16SymfeAhf3IHn06Pk1Z3Jrw6SEhMxG0cYQ5Brj59_H_24ush--IWu0YwcR2cmaN2NhyCbA8q70LwOFwvhVG5c7DcO1gmB8udg-U25Ty7vc3rjD-WTUCxB0IK2RH9zQr-rfob8Lr4bg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Goswami, Sangeeta</creator><creator>Walle, Thomas</creator><creator>Cornish, Andrew E.</creator><creator>Basu, Sreyashi</creator><creator>Anandhan, Swetha</creator><creator>Fernandez, Irina</creator><creator>Vence, Luis</creator><creator>Blando, Jorge</creator><creator>Zhao, Hao</creator><creator>Yadav, Shalini Singh</creator><creator>Ott, Martina</creator><creator>Kong, Ling Y.</creator><creator>Heimberger, Amy B.</creator><creator>de Groot, John</creator><creator>Sepesi, Boris</creator><creator>Overman, Michael</creator><creator>Kopetz, Scott</creator><creator>Allison, James P.</creator><creator>Pe’er, Dana</creator><creator>Sharma, Padmanee</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9970-8695</orcidid><orcidid>https://orcid.org/0000-0003-4658-055X</orcidid><orcidid>https://orcid.org/0000-0003-4835-955X</orcidid></search><sort><creationdate>20200101</creationdate><title>Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma</title><author>Goswami, Sangeeta ; Walle, Thomas ; Cornish, Andrew E. ; Basu, Sreyashi ; Anandhan, Swetha ; Fernandez, Irina ; Vence, Luis ; Blando, Jorge ; Zhao, Hao ; Yadav, Shalini Singh ; Ott, Martina ; Kong, Ling Y. ; Heimberger, Amy B. ; de Groot, John ; Sepesi, Boris ; Overman, Michael ; Kopetz, Scott ; Allison, James P. ; Pe’er, Dana ; Sharma, Padmanee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c740t-f3c299a28eeadc57ab87d5b2e7ccc70a8c80f7c66d72e84374a694e149161b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5'-Nucleotidase - metabolism</topic><topic>631/250/251</topic><topic>631/67/580</topic><topic>Algorithms</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antitumor activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - immunology</topic><topic>Brain Neoplasms - therapy</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>CD73 antigen</topic><topic>Cell Line, Tumor</topic><topic>Clinical trials</topic><topic>Colorectal carcinoma</topic><topic>Combinatorial analysis</topic><topic>CTLA-4 protein</topic><topic>Cytometry</topic><topic>Disease Models, Animal</topic><topic>Drug therapy</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene sequencing</topic><topic>Glioblastoma</topic><topic>Glioblastoma - diagnostic imaging</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - immunology</topic><topic>Glioblastoma - therapy</topic><topic>Glioblastoma multiforme</topic><topic>GPI-Linked Proteins - metabolism</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Immune response</topic><topic>Immunomodulation</topic><topic>Immunotherapy</topic><topic>Infectious Diseases</topic><topic>Letter</topic><topic>Lymphocytes, Tumor-Infiltrating - immunology</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Magnetic Resonance Imaging</topic><topic>Metabolic Diseases</topic><topic>Methods</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Medicine</topic><topic>Molecular Targeted Therapy</topic><topic>Myeloid Cells - metabolism</topic><topic>Neurosciences</topic><topic>Nucleotidases</topic><topic>Patients</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Physiological aspects</topic><topic>Prostate cancer</topic><topic>Receptor antibodies</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Solid tumors</topic><topic>Therapy</topic><topic>Translation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goswami, Sangeeta</creatorcontrib><creatorcontrib>Walle, Thomas</creatorcontrib><creatorcontrib>Cornish, Andrew E.</creatorcontrib><creatorcontrib>Basu, Sreyashi</creatorcontrib><creatorcontrib>Anandhan, Swetha</creatorcontrib><creatorcontrib>Fernandez, Irina</creatorcontrib><creatorcontrib>Vence, Luis</creatorcontrib><creatorcontrib>Blando, Jorge</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><creatorcontrib>Yadav, Shalini Singh</creatorcontrib><creatorcontrib>Ott, Martina</creatorcontrib><creatorcontrib>Kong, Ling Y.</creatorcontrib><creatorcontrib>Heimberger, Amy B.</creatorcontrib><creatorcontrib>de Groot, John</creatorcontrib><creatorcontrib>Sepesi, Boris</creatorcontrib><creatorcontrib>Overman, Michael</creatorcontrib><creatorcontrib>Kopetz, Scott</creatorcontrib><creatorcontrib>Allison, James P.</creatorcontrib><creatorcontrib>Pe’er, Dana</creatorcontrib><creatorcontrib>Sharma, Padmanee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goswami, Sangeeta</au><au>Walle, Thomas</au><au>Cornish, Andrew E.</au><au>Basu, Sreyashi</au><au>Anandhan, Swetha</au><au>Fernandez, Irina</au><au>Vence, Luis</au><au>Blando, Jorge</au><au>Zhao, Hao</au><au>Yadav, Shalini Singh</au><au>Ott, Martina</au><au>Kong, Ling Y.</au><au>Heimberger, Amy B.</au><au>de Groot, John</au><au>Sepesi, Boris</au><au>Overman, Michael</au><au>Kopetz, Scott</au><au>Allison, James P.</au><au>Pe’er, Dana</au><au>Sharma, Padmanee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>26</volume><issue>1</issue><spage>39</spage><epage>46</epage><pages>39-46</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types
1
,
2
. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73
hi
macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73
−/−
mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.
Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31873309</pmid><doi>10.1038/s41591-019-0694-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9970-8695</orcidid><orcidid>https://orcid.org/0000-0003-4658-055X</orcidid><orcidid>https://orcid.org/0000-0003-4835-955X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2020-01, Vol.26 (1), p.39-46 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182038 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 5'-Nucleotidase - metabolism 631/250/251 631/67/580 Algorithms Animal models Animals Antitumor activity Biomedical and Life Sciences Biomedicine Brain cancer Brain Neoplasms - diagnostic imaging Brain Neoplasms - genetics Brain Neoplasms - immunology Brain Neoplasms - therapy Cancer Cancer Research CD73 antigen Cell Line, Tumor Clinical trials Colorectal carcinoma Combinatorial analysis CTLA-4 protein Cytometry Disease Models, Animal Drug therapy Gene Expression Regulation, Neoplastic Gene sequencing Glioblastoma Glioblastoma - diagnostic imaging Glioblastoma - genetics Glioblastoma - immunology Glioblastoma - therapy Glioblastoma multiforme GPI-Linked Proteins - metabolism Health aspects Humans Immune checkpoint Immune response Immunomodulation Immunotherapy Infectious Diseases Letter Lymphocytes, Tumor-Infiltrating - immunology Macrophages Macrophages - metabolism Magnetic Resonance Imaging Metabolic Diseases Methods Mice, Inbred C57BL Molecular Medicine Molecular Targeted Therapy Myeloid Cells - metabolism Neurosciences Nucleotidases Patients PD-1 protein PD-L1 protein Physiological aspects Prostate cancer Receptor antibodies Ribonucleic acid RNA Solid tumors Therapy Translation Tumors |
title | Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immune%20profiling%20of%20human%20tumors%20identifies%20CD73%20as%20a%20combinatorial%20target%20in%20glioblastoma&rft.jtitle=Nature%20medicine&rft.au=Goswami,%20Sangeeta&rft.date=2020-01-01&rft.volume=26&rft.issue=1&rft.spage=39&rft.epage=46&rft.pages=39-46&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-019-0694-x&rft_dat=%3Cgale_pubme%3EA611371122%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343090733&rft_id=info:pmid/31873309&rft_galeid=A611371122&rfr_iscdi=true |