Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers
Although radiation is widely used to treat cancers, resistance mechanisms often develop and involve activation of DNA repair and inhibition of apoptosis. Therefore, compounds that sensitize cancer cells to radiation via alternative cell death pathways are valuable. We report here that ferroptosis, a...
Gespeichert in:
Veröffentlicht in: | ACS chemical biology 2020-02, Vol.15 (2), p.469-484 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 484 |
---|---|
container_issue | 2 |
container_start_page | 469 |
container_title | ACS chemical biology |
container_volume | 15 |
creator | Ye, Ling F Chaudhary, Kunal R Zandkarimi, Fereshteh Harken, Andrew D Kinslow, Connor J Upadhyayula, Pavan S Dovas, Athanassios Higgins, Dominique M Tan, Hui Zhang, Yan Buonanno, Manuela Wang, Tony J. C Hei, Tom K Bruce, Jeffrey N Canoll, Peter D Cheng, Simon K Stockwell, Brent R |
description | Although radiation is widely used to treat cancers, resistance mechanisms often develop and involve activation of DNA repair and inhibition of apoptosis. Therefore, compounds that sensitize cancer cells to radiation via alternative cell death pathways are valuable. We report here that ferroptosis, a form of nonapoptotic cell death driven by lipid peroxidation, is partly responsible for radiation-induced cancer cell death. Moreover, we found that small molecules activating ferroptosis through system xc – inhibition or GPX4 inhibition synergize with radiation to induce ferroptosis in several cancer types by enhancing cytoplasmic lipid peroxidation but not increasing DNA damage or caspase activation. Ferroptosis inducers synergized with cytoplasmic irradiation, but not nuclear irradiation. Finally, administration of ferroptosis inducers enhanced the antitumor effect of radiation in a murine xenograft model and in human patient-derived models of lung adenocarcinoma and glioma. These results suggest that ferroptosis inducers may be effective radiosensitizers that can expand the efficacy and range of indications for radiation therapy. |
doi_str_mv | 10.1021/acschembio.9b00939 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7180072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333603475</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-88a7eaabb9c45479003334ce9b23c9e30b4be79c739b70bbf8067ab8eae734e23</originalsourceid><addsrcrecordid>eNp9kUFPAjEQhRujEUT_gAezRy-L7bZstxcTQ0RJSDSK56btDlACW2x3Vfz1Li6iXDxNk_feN5M-hM4J7hKckCtlgpnBUlvXFRpjQcUBapNej8WZoPxw905EC52EMMeY0TQTx6hFSSZEStI20k8qt6q0roiHRV4ZyKORXdk8egTvPmz-LUVjb6dT8CEagPduVbpgQ6SKPHpeF-Cn9hNC9G7L2Z7e8Hw4RUcTtQhwtp0d9DK4Hffv49HD3bB_M4oVY6SMs0xxUEprYViPcYExpZQZEDqhRgDFmmngwnAqNMdaTzKccqUzUMApg4R20HXDXVV6CbmBovRqIVfeLpVfS6es3FcKO5NT9yY5yTDmG8DlFuDdawWhlEsbDCwWqgBXBZnUB6WYMt6rrUljNd6F4GGyW0Ow3JQjf8uR23Lq0MXfA3eRnzZqQ7cx1GE5d5Uv6v_6j_gF_oGhCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333603475</pqid></control><display><type>article</type><title>Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers</title><source>ACS Publications</source><source>MEDLINE</source><creator>Ye, Ling F ; Chaudhary, Kunal R ; Zandkarimi, Fereshteh ; Harken, Andrew D ; Kinslow, Connor J ; Upadhyayula, Pavan S ; Dovas, Athanassios ; Higgins, Dominique M ; Tan, Hui ; Zhang, Yan ; Buonanno, Manuela ; Wang, Tony J. C ; Hei, Tom K ; Bruce, Jeffrey N ; Canoll, Peter D ; Cheng, Simon K ; Stockwell, Brent R</creator><creatorcontrib>Ye, Ling F ; Chaudhary, Kunal R ; Zandkarimi, Fereshteh ; Harken, Andrew D ; Kinslow, Connor J ; Upadhyayula, Pavan S ; Dovas, Athanassios ; Higgins, Dominique M ; Tan, Hui ; Zhang, Yan ; Buonanno, Manuela ; Wang, Tony J. C ; Hei, Tom K ; Bruce, Jeffrey N ; Canoll, Peter D ; Cheng, Simon K ; Stockwell, Brent R</creatorcontrib><description>Although radiation is widely used to treat cancers, resistance mechanisms often develop and involve activation of DNA repair and inhibition of apoptosis. Therefore, compounds that sensitize cancer cells to radiation via alternative cell death pathways are valuable. We report here that ferroptosis, a form of nonapoptotic cell death driven by lipid peroxidation, is partly responsible for radiation-induced cancer cell death. Moreover, we found that small molecules activating ferroptosis through system xc – inhibition or GPX4 inhibition synergize with radiation to induce ferroptosis in several cancer types by enhancing cytoplasmic lipid peroxidation but not increasing DNA damage or caspase activation. Ferroptosis inducers synergized with cytoplasmic irradiation, but not nuclear irradiation. Finally, administration of ferroptosis inducers enhanced the antitumor effect of radiation in a murine xenograft model and in human patient-derived models of lung adenocarcinoma and glioma. These results suggest that ferroptosis inducers may be effective radiosensitizers that can expand the efficacy and range of indications for radiation therapy.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.9b00939</identifier><identifier>PMID: 31899616</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Transport System y+ - metabolism ; Animals ; Antineoplastic Agents - therapeutic use ; Carbolines - therapeutic use ; Cell Line, Tumor ; Ferroptosis - drug effects ; Gamma Rays ; Humans ; Imidazoles - therapeutic use ; Ketones - therapeutic use ; Lipid Peroxidation - drug effects ; Lipid Peroxidation - radiation effects ; Mice, Nude ; Neoplasms - drug therapy ; Neoplasms - radiotherapy ; Piperazines - therapeutic use ; Radiation-Sensitizing Agents - therapeutic use ; Sorafenib - therapeutic use ; Xenograft Model Antitumor Assays</subject><ispartof>ACS chemical biology, 2020-02, Vol.15 (2), p.469-484</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-88a7eaabb9c45479003334ce9b23c9e30b4be79c739b70bbf8067ab8eae734e23</citedby><cites>FETCH-LOGICAL-a441t-88a7eaabb9c45479003334ce9b23c9e30b4be79c739b70bbf8067ab8eae734e23</cites><orcidid>0000-0002-3532-3868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.9b00939$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.9b00939$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31899616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Ling F</creatorcontrib><creatorcontrib>Chaudhary, Kunal R</creatorcontrib><creatorcontrib>Zandkarimi, Fereshteh</creatorcontrib><creatorcontrib>Harken, Andrew D</creatorcontrib><creatorcontrib>Kinslow, Connor J</creatorcontrib><creatorcontrib>Upadhyayula, Pavan S</creatorcontrib><creatorcontrib>Dovas, Athanassios</creatorcontrib><creatorcontrib>Higgins, Dominique M</creatorcontrib><creatorcontrib>Tan, Hui</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Buonanno, Manuela</creatorcontrib><creatorcontrib>Wang, Tony J. C</creatorcontrib><creatorcontrib>Hei, Tom K</creatorcontrib><creatorcontrib>Bruce, Jeffrey N</creatorcontrib><creatorcontrib>Canoll, Peter D</creatorcontrib><creatorcontrib>Cheng, Simon K</creatorcontrib><creatorcontrib>Stockwell, Brent R</creatorcontrib><title>Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Although radiation is widely used to treat cancers, resistance mechanisms often develop and involve activation of DNA repair and inhibition of apoptosis. Therefore, compounds that sensitize cancer cells to radiation via alternative cell death pathways are valuable. We report here that ferroptosis, a form of nonapoptotic cell death driven by lipid peroxidation, is partly responsible for radiation-induced cancer cell death. Moreover, we found that small molecules activating ferroptosis through system xc – inhibition or GPX4 inhibition synergize with radiation to induce ferroptosis in several cancer types by enhancing cytoplasmic lipid peroxidation but not increasing DNA damage or caspase activation. Ferroptosis inducers synergized with cytoplasmic irradiation, but not nuclear irradiation. Finally, administration of ferroptosis inducers enhanced the antitumor effect of radiation in a murine xenograft model and in human patient-derived models of lung adenocarcinoma and glioma. These results suggest that ferroptosis inducers may be effective radiosensitizers that can expand the efficacy and range of indications for radiation therapy.</description><subject>Amino Acid Transport System y+ - metabolism</subject><subject>Animals</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Carbolines - therapeutic use</subject><subject>Cell Line, Tumor</subject><subject>Ferroptosis - drug effects</subject><subject>Gamma Rays</subject><subject>Humans</subject><subject>Imidazoles - therapeutic use</subject><subject>Ketones - therapeutic use</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Lipid Peroxidation - radiation effects</subject><subject>Mice, Nude</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - radiotherapy</subject><subject>Piperazines - therapeutic use</subject><subject>Radiation-Sensitizing Agents - therapeutic use</subject><subject>Sorafenib - therapeutic use</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFPAjEQhRujEUT_gAezRy-L7bZstxcTQ0RJSDSK56btDlACW2x3Vfz1Li6iXDxNk_feN5M-hM4J7hKckCtlgpnBUlvXFRpjQcUBapNej8WZoPxw905EC52EMMeY0TQTx6hFSSZEStI20k8qt6q0roiHRV4ZyKORXdk8egTvPmz-LUVjb6dT8CEagPduVbpgQ6SKPHpeF-Cn9hNC9G7L2Z7e8Hw4RUcTtQhwtp0d9DK4Hffv49HD3bB_M4oVY6SMs0xxUEprYViPcYExpZQZEDqhRgDFmmngwnAqNMdaTzKccqUzUMApg4R20HXDXVV6CbmBovRqIVfeLpVfS6es3FcKO5NT9yY5yTDmG8DlFuDdawWhlEsbDCwWqgBXBZnUB6WYMt6rrUljNd6F4GGyW0Ow3JQjf8uR23Lq0MXfA3eRnzZqQ7cx1GE5d5Uv6v_6j_gF_oGhCw</recordid><startdate>20200221</startdate><enddate>20200221</enddate><creator>Ye, Ling F</creator><creator>Chaudhary, Kunal R</creator><creator>Zandkarimi, Fereshteh</creator><creator>Harken, Andrew D</creator><creator>Kinslow, Connor J</creator><creator>Upadhyayula, Pavan S</creator><creator>Dovas, Athanassios</creator><creator>Higgins, Dominique M</creator><creator>Tan, Hui</creator><creator>Zhang, Yan</creator><creator>Buonanno, Manuela</creator><creator>Wang, Tony J. C</creator><creator>Hei, Tom K</creator><creator>Bruce, Jeffrey N</creator><creator>Canoll, Peter D</creator><creator>Cheng, Simon K</creator><creator>Stockwell, Brent R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3532-3868</orcidid></search><sort><creationdate>20200221</creationdate><title>Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers</title><author>Ye, Ling F ; Chaudhary, Kunal R ; Zandkarimi, Fereshteh ; Harken, Andrew D ; Kinslow, Connor J ; Upadhyayula, Pavan S ; Dovas, Athanassios ; Higgins, Dominique M ; Tan, Hui ; Zhang, Yan ; Buonanno, Manuela ; Wang, Tony J. C ; Hei, Tom K ; Bruce, Jeffrey N ; Canoll, Peter D ; Cheng, Simon K ; Stockwell, Brent R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-88a7eaabb9c45479003334ce9b23c9e30b4be79c739b70bbf8067ab8eae734e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino Acid Transport System y+ - metabolism</topic><topic>Animals</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Carbolines - therapeutic use</topic><topic>Cell Line, Tumor</topic><topic>Ferroptosis - drug effects</topic><topic>Gamma Rays</topic><topic>Humans</topic><topic>Imidazoles - therapeutic use</topic><topic>Ketones - therapeutic use</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Lipid Peroxidation - radiation effects</topic><topic>Mice, Nude</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - radiotherapy</topic><topic>Piperazines - therapeutic use</topic><topic>Radiation-Sensitizing Agents - therapeutic use</topic><topic>Sorafenib - therapeutic use</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Ling F</creatorcontrib><creatorcontrib>Chaudhary, Kunal R</creatorcontrib><creatorcontrib>Zandkarimi, Fereshteh</creatorcontrib><creatorcontrib>Harken, Andrew D</creatorcontrib><creatorcontrib>Kinslow, Connor J</creatorcontrib><creatorcontrib>Upadhyayula, Pavan S</creatorcontrib><creatorcontrib>Dovas, Athanassios</creatorcontrib><creatorcontrib>Higgins, Dominique M</creatorcontrib><creatorcontrib>Tan, Hui</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Buonanno, Manuela</creatorcontrib><creatorcontrib>Wang, Tony J. C</creatorcontrib><creatorcontrib>Hei, Tom K</creatorcontrib><creatorcontrib>Bruce, Jeffrey N</creatorcontrib><creatorcontrib>Canoll, Peter D</creatorcontrib><creatorcontrib>Cheng, Simon K</creatorcontrib><creatorcontrib>Stockwell, Brent R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Ling F</au><au>Chaudhary, Kunal R</au><au>Zandkarimi, Fereshteh</au><au>Harken, Andrew D</au><au>Kinslow, Connor J</au><au>Upadhyayula, Pavan S</au><au>Dovas, Athanassios</au><au>Higgins, Dominique M</au><au>Tan, Hui</au><au>Zhang, Yan</au><au>Buonanno, Manuela</au><au>Wang, Tony J. C</au><au>Hei, Tom K</au><au>Bruce, Jeffrey N</au><au>Canoll, Peter D</au><au>Cheng, Simon K</au><au>Stockwell, Brent R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2020-02-21</date><risdate>2020</risdate><volume>15</volume><issue>2</issue><spage>469</spage><epage>484</epage><pages>469-484</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Although radiation is widely used to treat cancers, resistance mechanisms often develop and involve activation of DNA repair and inhibition of apoptosis. Therefore, compounds that sensitize cancer cells to radiation via alternative cell death pathways are valuable. We report here that ferroptosis, a form of nonapoptotic cell death driven by lipid peroxidation, is partly responsible for radiation-induced cancer cell death. Moreover, we found that small molecules activating ferroptosis through system xc – inhibition or GPX4 inhibition synergize with radiation to induce ferroptosis in several cancer types by enhancing cytoplasmic lipid peroxidation but not increasing DNA damage or caspase activation. Ferroptosis inducers synergized with cytoplasmic irradiation, but not nuclear irradiation. Finally, administration of ferroptosis inducers enhanced the antitumor effect of radiation in a murine xenograft model and in human patient-derived models of lung adenocarcinoma and glioma. These results suggest that ferroptosis inducers may be effective radiosensitizers that can expand the efficacy and range of indications for radiation therapy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31899616</pmid><doi>10.1021/acschembio.9b00939</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3532-3868</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8929 |
ispartof | ACS chemical biology, 2020-02, Vol.15 (2), p.469-484 |
issn | 1554-8929 1554-8937 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7180072 |
source | ACS Publications; MEDLINE |
subjects | Amino Acid Transport System y+ - metabolism Animals Antineoplastic Agents - therapeutic use Carbolines - therapeutic use Cell Line, Tumor Ferroptosis - drug effects Gamma Rays Humans Imidazoles - therapeutic use Ketones - therapeutic use Lipid Peroxidation - drug effects Lipid Peroxidation - radiation effects Mice, Nude Neoplasms - drug therapy Neoplasms - radiotherapy Piperazines - therapeutic use Radiation-Sensitizing Agents - therapeutic use Sorafenib - therapeutic use Xenograft Model Antitumor Assays |
title | Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-Induced%20Lipid%20Peroxidation%20Triggers%20Ferroptosis%20and%20Synergizes%20with%20Ferroptosis%20Inducers&rft.jtitle=ACS%20chemical%20biology&rft.au=Ye,%20Ling%20F&rft.date=2020-02-21&rft.volume=15&rft.issue=2&rft.spage=469&rft.epage=484&rft.pages=469-484&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.9b00939&rft_dat=%3Cproquest_pubme%3E2333603475%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333603475&rft_id=info:pmid/31899616&rfr_iscdi=true |