Measuring Stepwise Binding of Thermally Fluctuating Particles to Cell Membranes without Fluorescence

Thermal motions enable a particle to probe the optimal interaction state when binding to a cell membrane. However, especially on the scale of microseconds and nanometers, position and orientation fluctuations are difficult to observe with common measurement technologies. Here, we show that it is pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2020-04, Vol.118 (8), p.1850-1860
Hauptverfasser: Rohrbach, Alexander, Meyer, Tim, Stelzer, Ernst H.K., Kress, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1860
container_issue 8
container_start_page 1850
container_title Biophysical journal
container_volume 118
creator Rohrbach, Alexander
Meyer, Tim
Stelzer, Ernst H.K.
Kress, Holger
description Thermal motions enable a particle to probe the optimal interaction state when binding to a cell membrane. However, especially on the scale of microseconds and nanometers, position and orientation fluctuations are difficult to observe with common measurement technologies. Here, we show that it is possible to detect single binding events of immunoglobulin-G-coated polystyrene beads, which are held in an optical trap near the cell membrane of a macrophage. Changes in the spatial and temporal thermal fluctuations of the particle were measured interferometrically, and no fluorophore labeling was required. We demonstrate both by Brownian dynamic simulations and by experiments that sequential stepwise increases in the force constant of the bond between a bead and a cell of typically 20 pN/μm are clearly detectable. In addition, this technique provides estimates about binding rates and diffusion constants of membrane receptors. The simple approach of thermal noise tracking points out new strategies in understanding interactions between cells and particles, which are relevant for a large variety of processes, including phagocytosis, drug delivery, and the effects of small microplastics and particulates on cells.
doi_str_mv 10.1016/j.bpj.2020.03.005
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349520302368</els_id><sourcerecordid>32229315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-a4ff066e285b4e28dab675c7f688e06b4d820748c0d4a9357e2e9ab05b7c3ebf3</originalsourceid><addsrcrecordid>eNp9kN1q4zAQhUXZpUl_HqA3i1_A7kiW_MNCoRu27ULKFtpeC0keNwqOHSS5IW-_MmnL9qY3MzBzzhnmI-SCQkaBFpfrTG_XGQMGGeQZgDgicyo4SwGq4huZA0CR5rwWM3Li_RqAMgH0mMxyxlidUzEnzT0qPzrbvySPAbc76zH5ZftmGgxt8rRCt1Fdt09uutGEUYVp8aBcsKZDn4QhWWDXJfe40U71cbKzYTWMYdIPDr3B3uAZ-d6qzuP5Wz8lzze_nxZ36fLv7Z_F9TI1XNCQKt62UBTIKqF5rI3SRSlM2RZVhVBo3lQMSl4ZaLiqc1Eiw1ppELo0Oeo2PyVXh9ztqDfYxNvBqU5und0ot5eDsvLzprcr-TK8ypKWQtQ8BtBDgHGD9w7bDy8FOSGXaxmRywm5hFxG5NHz4_-jH453xlHw8yDA-PqrRSe9sROWxjo0QTaD_SL-H8d1lQc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Measuring Stepwise Binding of Thermally Fluctuating Particles to Cell Membranes without Fluorescence</title><source>PubMed Central Free</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Open Access: Cell Press Free Archives</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Rohrbach, Alexander ; Meyer, Tim ; Stelzer, Ernst H.K. ; Kress, Holger</creator><creatorcontrib>Rohrbach, Alexander ; Meyer, Tim ; Stelzer, Ernst H.K. ; Kress, Holger</creatorcontrib><description>Thermal motions enable a particle to probe the optimal interaction state when binding to a cell membrane. However, especially on the scale of microseconds and nanometers, position and orientation fluctuations are difficult to observe with common measurement technologies. Here, we show that it is possible to detect single binding events of immunoglobulin-G-coated polystyrene beads, which are held in an optical trap near the cell membrane of a macrophage. Changes in the spatial and temporal thermal fluctuations of the particle were measured interferometrically, and no fluorophore labeling was required. We demonstrate both by Brownian dynamic simulations and by experiments that sequential stepwise increases in the force constant of the bond between a bead and a cell of typically 20 pN/μm are clearly detectable. In addition, this technique provides estimates about binding rates and diffusion constants of membrane receptors. The simple approach of thermal noise tracking points out new strategies in understanding interactions between cells and particles, which are relevant for a large variety of processes, including phagocytosis, drug delivery, and the effects of small microplastics and particulates on cells.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2020.03.005</identifier><identifier>PMID: 32229315</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysical Phenomena ; Cell Membrane ; Diffusion ; Motion ; Plastics</subject><ispartof>Biophysical journal, 2020-04, Vol.118 (8), p.1850-1860</ispartof><rights>2020 Biophysical Society</rights><rights>Copyright © 2020 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 Biophysical Society. 2020 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-a4ff066e285b4e28dab675c7f688e06b4d820748c0d4a9357e2e9ab05b7c3ebf3</citedby><cites>FETCH-LOGICAL-c451t-a4ff066e285b4e28dab675c7f688e06b4d820748c0d4a9357e2e9ab05b7c3ebf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175594/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2020.03.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32229315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohrbach, Alexander</creatorcontrib><creatorcontrib>Meyer, Tim</creatorcontrib><creatorcontrib>Stelzer, Ernst H.K.</creatorcontrib><creatorcontrib>Kress, Holger</creatorcontrib><title>Measuring Stepwise Binding of Thermally Fluctuating Particles to Cell Membranes without Fluorescence</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Thermal motions enable a particle to probe the optimal interaction state when binding to a cell membrane. However, especially on the scale of microseconds and nanometers, position and orientation fluctuations are difficult to observe with common measurement technologies. Here, we show that it is possible to detect single binding events of immunoglobulin-G-coated polystyrene beads, which are held in an optical trap near the cell membrane of a macrophage. Changes in the spatial and temporal thermal fluctuations of the particle were measured interferometrically, and no fluorophore labeling was required. We demonstrate both by Brownian dynamic simulations and by experiments that sequential stepwise increases in the force constant of the bond between a bead and a cell of typically 20 pN/μm are clearly detectable. In addition, this technique provides estimates about binding rates and diffusion constants of membrane receptors. The simple approach of thermal noise tracking points out new strategies in understanding interactions between cells and particles, which are relevant for a large variety of processes, including phagocytosis, drug delivery, and the effects of small microplastics and particulates on cells.</description><subject>Biophysical Phenomena</subject><subject>Cell Membrane</subject><subject>Diffusion</subject><subject>Motion</subject><subject>Plastics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN1q4zAQhUXZpUl_HqA3i1_A7kiW_MNCoRu27ULKFtpeC0keNwqOHSS5IW-_MmnL9qY3MzBzzhnmI-SCQkaBFpfrTG_XGQMGGeQZgDgicyo4SwGq4huZA0CR5rwWM3Li_RqAMgH0mMxyxlidUzEnzT0qPzrbvySPAbc76zH5ZftmGgxt8rRCt1Fdt09uutGEUYVp8aBcsKZDn4QhWWDXJfe40U71cbKzYTWMYdIPDr3B3uAZ-d6qzuP5Wz8lzze_nxZ36fLv7Z_F9TI1XNCQKt62UBTIKqF5rI3SRSlM2RZVhVBo3lQMSl4ZaLiqc1Eiw1ppELo0Oeo2PyVXh9ztqDfYxNvBqU5und0ot5eDsvLzprcr-TK8ypKWQtQ8BtBDgHGD9w7bDy8FOSGXaxmRywm5hFxG5NHz4_-jH453xlHw8yDA-PqrRSe9sROWxjo0QTaD_SL-H8d1lQc</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Rohrbach, Alexander</creator><creator>Meyer, Tim</creator><creator>Stelzer, Ernst H.K.</creator><creator>Kress, Holger</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20200421</creationdate><title>Measuring Stepwise Binding of Thermally Fluctuating Particles to Cell Membranes without Fluorescence</title><author>Rohrbach, Alexander ; Meyer, Tim ; Stelzer, Ernst H.K. ; Kress, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-a4ff066e285b4e28dab675c7f688e06b4d820748c0d4a9357e2e9ab05b7c3ebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biophysical Phenomena</topic><topic>Cell Membrane</topic><topic>Diffusion</topic><topic>Motion</topic><topic>Plastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohrbach, Alexander</creatorcontrib><creatorcontrib>Meyer, Tim</creatorcontrib><creatorcontrib>Stelzer, Ernst H.K.</creatorcontrib><creatorcontrib>Kress, Holger</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohrbach, Alexander</au><au>Meyer, Tim</au><au>Stelzer, Ernst H.K.</au><au>Kress, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Stepwise Binding of Thermally Fluctuating Particles to Cell Membranes without Fluorescence</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2020-04-21</date><risdate>2020</risdate><volume>118</volume><issue>8</issue><spage>1850</spage><epage>1860</epage><pages>1850-1860</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Thermal motions enable a particle to probe the optimal interaction state when binding to a cell membrane. However, especially on the scale of microseconds and nanometers, position and orientation fluctuations are difficult to observe with common measurement technologies. Here, we show that it is possible to detect single binding events of immunoglobulin-G-coated polystyrene beads, which are held in an optical trap near the cell membrane of a macrophage. Changes in the spatial and temporal thermal fluctuations of the particle were measured interferometrically, and no fluorophore labeling was required. We demonstrate both by Brownian dynamic simulations and by experiments that sequential stepwise increases in the force constant of the bond between a bead and a cell of typically 20 pN/μm are clearly detectable. In addition, this technique provides estimates about binding rates and diffusion constants of membrane receptors. The simple approach of thermal noise tracking points out new strategies in understanding interactions between cells and particles, which are relevant for a large variety of processes, including phagocytosis, drug delivery, and the effects of small microplastics and particulates on cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32229315</pmid><doi>10.1016/j.bpj.2020.03.005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2020-04, Vol.118 (8), p.1850-1860
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175594
source PubMed Central Free; MEDLINE; Elsevier ScienceDirect Journals Complete; Open Access: Cell Press Free Archives; Free E-Journal (出版社公開部分のみ)
subjects Biophysical Phenomena
Cell Membrane
Diffusion
Motion
Plastics
title Measuring Stepwise Binding of Thermally Fluctuating Particles to Cell Membranes without Fluorescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Stepwise%20Binding%20of%20Thermally%20Fluctuating%20Particles%20to%20Cell%20Membranes%20without%20Fluorescence&rft.jtitle=Biophysical%20journal&rft.au=Rohrbach,%20Alexander&rft.date=2020-04-21&rft.volume=118&rft.issue=8&rft.spage=1850&rft.epage=1860&rft.pages=1850-1860&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2020.03.005&rft_dat=%3Cpubmed_cross%3E32229315%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32229315&rft_els_id=S0006349520302368&rfr_iscdi=true