3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images

3D optical coherence tomography angiography (OCT-A) is a novel and non-invasive imaging modality for analyzing retinal diseases. The studies of microvasculature in 2D en face projection images have been widely implemented, but comprehensive 3D analysis of OCT-A images with rich depth-resolved microv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-05, Vol.39 (5), p.1335-1346
Hauptverfasser: Zhang, Jiong, Qiao, Yuchuan, Sarabi, Mona Sharifi, Khansari, Maziyar M., Gahm, Jin K., Kashani, Amir H., Shi, Yonggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1346
container_issue 5
container_start_page 1335
container_title IEEE transactions on medical imaging
container_volume 39
creator Zhang, Jiong
Qiao, Yuchuan
Sarabi, Mona Sharifi
Khansari, Maziyar M.
Gahm, Jin K.
Kashani, Amir H.
Shi, Yonggang
description 3D optical coherence tomography angiography (OCT-A) is a novel and non-invasive imaging modality for analyzing retinal diseases. The studies of microvasculature in 2D en face projection images have been widely implemented, but comprehensive 3D analysis of OCT-A images with rich depth-resolved microvascular information is rarely considered. In this paper, we propose a robust, effective, and automatic 3D shape modeling framework to provide a high-quality 3D vessel representation and to preserve valuable 3D geometric and topological information for vessel analysis. Effective vessel enhancement and extraction steps by means of curvelet denoising and optimally oriented flux (OOF) filtering are first designed to produce 3D microvascular networks. Afterwards, a novel 3D data representation of OCT-A microvasculature is reconstructed via advanced mesh reconstruction techniques. Based on the 3D surfaces, shape analysis is established to extract novel shape-based microvascular area distortion via the Laplace-Beltrami eigen-projection. The extracted feature is integrated into a graph-cut segmentation system to categorize large vessels and small capillaries for more precise shape analysis. The proposed framework is validated on a dedicated repeated scan dataset including 260 volume images and shows high repeatability. Statistical analysis using the surface area biomarker is performed on small capillaries to avoid the effect of tailing artifact from large vessels. It shows significant differences (p
doi_str_mv 10.1109/TMI.2019.2948867
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7174137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8879535</ieee_id><sourcerecordid>2397909766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-b7eb1c1df60b3d1f042e7ee12272e7113ead86ac80626ba7939b03fef973e9163</originalsourceid><addsrcrecordid>eNpdkdGLEzEQxoMoXu_0XRAk4IsvWzNJdpO8CKV6WrhyoBV8C9nd2W2O7aa32T3of29Ka1GfZob5zcfMfIS8ATYHYObjZr2acwZmzo3UulDPyAzyXGc8l7-ekxnjSmeMFfyKXMf4wBjInJmX5EpAIZXkYkY24jP9sXV7pOtQY-f7lrq-povedYfoIw0N_Y6jTyVd-2oITy5WU-fGaUDqe3q_3GSLvvWhHdx-e6CrnWsxviIvGtdFfH2ON-Tn7ZfN8lt2d_91tVzcZZWUcsxKhSVUUDcFK0UNDZMcFSJwrlICINDVunCVThcUpVNGmJKJBhujBBooxA35dNLdT-UO6wr7cXCd3Q9-54aDDc7bfzu939o2PFkFSoJQSeDDWWAIjxPG0e58rLDrXI9hipYLpnPQIGVC3_-HPoRpSH85UkYZZlRx3IidqPSqGAdsLssAs0fLbLLMHi2zZ8vSyLu_j7gM_PEoAW9PgEfES1trZXKRi98jOZpj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397909766</pqid></control><display><type>article</type><title>3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jiong ; Qiao, Yuchuan ; Sarabi, Mona Sharifi ; Khansari, Maziyar M. ; Gahm, Jin K. ; Kashani, Amir H. ; Shi, Yonggang</creator><creatorcontrib>Zhang, Jiong ; Qiao, Yuchuan ; Sarabi, Mona Sharifi ; Khansari, Maziyar M. ; Gahm, Jin K. ; Kashani, Amir H. ; Shi, Yonggang</creatorcontrib><description>3D optical coherence tomography angiography (OCT-A) is a novel and non-invasive imaging modality for analyzing retinal diseases. The studies of microvasculature in 2D en face projection images have been widely implemented, but comprehensive 3D analysis of OCT-A images with rich depth-resolved microvascular information is rarely considered. In this paper, we propose a robust, effective, and automatic 3D shape modeling framework to provide a high-quality 3D vessel representation and to preserve valuable 3D geometric and topological information for vessel analysis. Effective vessel enhancement and extraction steps by means of curvelet denoising and optimally oriented flux (OOF) filtering are first designed to produce 3D microvascular networks. Afterwards, a novel 3D data representation of OCT-A microvasculature is reconstructed via advanced mesh reconstruction techniques. Based on the 3D surfaces, shape analysis is established to extract novel shape-based microvascular area distortion via the Laplace-Beltrami eigen-projection. The extracted feature is integrated into a graph-cut segmentation system to categorize large vessels and small capillaries for more precise shape analysis. The proposed framework is validated on a dedicated repeated scan dataset including 260 volume images and shows high repeatability. Statistical analysis using the surface area biomarker is performed on small capillaries to avoid the effect of tailing artifact from large vessels. It shows significant differences (p&lt;; 0.001) between DR stages on 100 subjects in a OCTA-DR dataset. The proposed shape modeling and analysis framework opens the possibility for further investigating OCT-A microvasculature in a new perspective.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2948867</identifier><identifier>PMID: 31647423</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Angiography ; Biomarkers ; Blood vessels ; Capillaries ; Datasets ; Diabetic retinopathy ; Feature extraction ; Finite element method ; Image reconstruction ; Image segmentation ; Medical imaging ; Microvasculature ; Modelling ; Noise reduction ; Optical Coherence Tomography ; Optical coherence tomography angiography ; Representations ; Retina ; retinal microvasculature ; Shape ; shape analysis ; Solid modeling ; Statistical analysis ; Surface reconstruction ; Surface treatment ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1335-1346</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-b7eb1c1df60b3d1f042e7ee12272e7113ead86ac80626ba7939b03fef973e9163</citedby><cites>FETCH-LOGICAL-c444t-b7eb1c1df60b3d1f042e7ee12272e7113ead86ac80626ba7939b03fef973e9163</cites><orcidid>0000-0002-3466-4302 ; 0000-0002-1922-9118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8879535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8879535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31647423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jiong</creatorcontrib><creatorcontrib>Qiao, Yuchuan</creatorcontrib><creatorcontrib>Sarabi, Mona Sharifi</creatorcontrib><creatorcontrib>Khansari, Maziyar M.</creatorcontrib><creatorcontrib>Gahm, Jin K.</creatorcontrib><creatorcontrib>Kashani, Amir H.</creatorcontrib><creatorcontrib>Shi, Yonggang</creatorcontrib><title>3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>3D optical coherence tomography angiography (OCT-A) is a novel and non-invasive imaging modality for analyzing retinal diseases. The studies of microvasculature in 2D en face projection images have been widely implemented, but comprehensive 3D analysis of OCT-A images with rich depth-resolved microvascular information is rarely considered. In this paper, we propose a robust, effective, and automatic 3D shape modeling framework to provide a high-quality 3D vessel representation and to preserve valuable 3D geometric and topological information for vessel analysis. Effective vessel enhancement and extraction steps by means of curvelet denoising and optimally oriented flux (OOF) filtering are first designed to produce 3D microvascular networks. Afterwards, a novel 3D data representation of OCT-A microvasculature is reconstructed via advanced mesh reconstruction techniques. Based on the 3D surfaces, shape analysis is established to extract novel shape-based microvascular area distortion via the Laplace-Beltrami eigen-projection. The extracted feature is integrated into a graph-cut segmentation system to categorize large vessels and small capillaries for more precise shape analysis. The proposed framework is validated on a dedicated repeated scan dataset including 260 volume images and shows high repeatability. Statistical analysis using the surface area biomarker is performed on small capillaries to avoid the effect of tailing artifact from large vessels. It shows significant differences (p&lt;; 0.001) between DR stages on 100 subjects in a OCTA-DR dataset. The proposed shape modeling and analysis framework opens the possibility for further investigating OCT-A microvasculature in a new perspective.</description><subject>Angiography</subject><subject>Biomarkers</subject><subject>Blood vessels</subject><subject>Capillaries</subject><subject>Datasets</subject><subject>Diabetic retinopathy</subject><subject>Feature extraction</subject><subject>Finite element method</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Microvasculature</subject><subject>Modelling</subject><subject>Noise reduction</subject><subject>Optical Coherence Tomography</subject><subject>Optical coherence tomography angiography</subject><subject>Representations</subject><subject>Retina</subject><subject>retinal microvasculature</subject><subject>Shape</subject><subject>shape analysis</subject><subject>Solid modeling</subject><subject>Statistical analysis</subject><subject>Surface reconstruction</subject><subject>Surface treatment</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkdGLEzEQxoMoXu_0XRAk4IsvWzNJdpO8CKV6WrhyoBV8C9nd2W2O7aa32T3of29Ka1GfZob5zcfMfIS8ATYHYObjZr2acwZmzo3UulDPyAzyXGc8l7-ekxnjSmeMFfyKXMf4wBjInJmX5EpAIZXkYkY24jP9sXV7pOtQY-f7lrq-povedYfoIw0N_Y6jTyVd-2oITy5WU-fGaUDqe3q_3GSLvvWhHdx-e6CrnWsxviIvGtdFfH2ON-Tn7ZfN8lt2d_91tVzcZZWUcsxKhSVUUDcFK0UNDZMcFSJwrlICINDVunCVThcUpVNGmJKJBhujBBooxA35dNLdT-UO6wr7cXCd3Q9-54aDDc7bfzu939o2PFkFSoJQSeDDWWAIjxPG0e58rLDrXI9hipYLpnPQIGVC3_-HPoRpSH85UkYZZlRx3IidqPSqGAdsLssAs0fLbLLMHi2zZ8vSyLu_j7gM_PEoAW9PgEfES1trZXKRi98jOZpj</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zhang, Jiong</creator><creator>Qiao, Yuchuan</creator><creator>Sarabi, Mona Sharifi</creator><creator>Khansari, Maziyar M.</creator><creator>Gahm, Jin K.</creator><creator>Kashani, Amir H.</creator><creator>Shi, Yonggang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3466-4302</orcidid><orcidid>https://orcid.org/0000-0002-1922-9118</orcidid></search><sort><creationdate>20200501</creationdate><title>3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images</title><author>Zhang, Jiong ; Qiao, Yuchuan ; Sarabi, Mona Sharifi ; Khansari, Maziyar M. ; Gahm, Jin K. ; Kashani, Amir H. ; Shi, Yonggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-b7eb1c1df60b3d1f042e7ee12272e7113ead86ac80626ba7939b03fef973e9163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiography</topic><topic>Biomarkers</topic><topic>Blood vessels</topic><topic>Capillaries</topic><topic>Datasets</topic><topic>Diabetic retinopathy</topic><topic>Feature extraction</topic><topic>Finite element method</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Microvasculature</topic><topic>Modelling</topic><topic>Noise reduction</topic><topic>Optical Coherence Tomography</topic><topic>Optical coherence tomography angiography</topic><topic>Representations</topic><topic>Retina</topic><topic>retinal microvasculature</topic><topic>Shape</topic><topic>shape analysis</topic><topic>Solid modeling</topic><topic>Statistical analysis</topic><topic>Surface reconstruction</topic><topic>Surface treatment</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiong</creatorcontrib><creatorcontrib>Qiao, Yuchuan</creatorcontrib><creatorcontrib>Sarabi, Mona Sharifi</creatorcontrib><creatorcontrib>Khansari, Maziyar M.</creatorcontrib><creatorcontrib>Gahm, Jin K.</creatorcontrib><creatorcontrib>Kashani, Amir H.</creatorcontrib><creatorcontrib>Shi, Yonggang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jiong</au><au>Qiao, Yuchuan</au><au>Sarabi, Mona Sharifi</au><au>Khansari, Maziyar M.</au><au>Gahm, Jin K.</au><au>Kashani, Amir H.</au><au>Shi, Yonggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>39</volume><issue>5</issue><spage>1335</spage><epage>1346</epage><pages>1335-1346</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>3D optical coherence tomography angiography (OCT-A) is a novel and non-invasive imaging modality for analyzing retinal diseases. The studies of microvasculature in 2D en face projection images have been widely implemented, but comprehensive 3D analysis of OCT-A images with rich depth-resolved microvascular information is rarely considered. In this paper, we propose a robust, effective, and automatic 3D shape modeling framework to provide a high-quality 3D vessel representation and to preserve valuable 3D geometric and topological information for vessel analysis. Effective vessel enhancement and extraction steps by means of curvelet denoising and optimally oriented flux (OOF) filtering are first designed to produce 3D microvascular networks. Afterwards, a novel 3D data representation of OCT-A microvasculature is reconstructed via advanced mesh reconstruction techniques. Based on the 3D surfaces, shape analysis is established to extract novel shape-based microvascular area distortion via the Laplace-Beltrami eigen-projection. The extracted feature is integrated into a graph-cut segmentation system to categorize large vessels and small capillaries for more precise shape analysis. The proposed framework is validated on a dedicated repeated scan dataset including 260 volume images and shows high repeatability. Statistical analysis using the surface area biomarker is performed on small capillaries to avoid the effect of tailing artifact from large vessels. It shows significant differences (p&lt;; 0.001) between DR stages on 100 subjects in a OCTA-DR dataset. The proposed shape modeling and analysis framework opens the possibility for further investigating OCT-A microvasculature in a new perspective.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31647423</pmid><doi>10.1109/TMI.2019.2948867</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3466-4302</orcidid><orcidid>https://orcid.org/0000-0002-1922-9118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1335-1346
issn 0278-0062
1558-254X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7174137
source IEEE Electronic Library (IEL)
subjects Angiography
Biomarkers
Blood vessels
Capillaries
Datasets
Diabetic retinopathy
Feature extraction
Finite element method
Image reconstruction
Image segmentation
Medical imaging
Microvasculature
Modelling
Noise reduction
Optical Coherence Tomography
Optical coherence tomography angiography
Representations
Retina
retinal microvasculature
Shape
shape analysis
Solid modeling
Statistical analysis
Surface reconstruction
Surface treatment
Three dimensional models
Three-dimensional displays
title 3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Shape%20Modeling%20and%20Analysis%20of%20Retinal%20Microvasculature%20in%20OCT-Angiography%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zhang,%20Jiong&rft.date=2020-05-01&rft.volume=39&rft.issue=5&rft.spage=1335&rft.epage=1346&rft.pages=1335-1346&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2948867&rft_dat=%3Cproquest_RIE%3E2397909766%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397909766&rft_id=info:pmid/31647423&rft_ieee_id=8879535&rfr_iscdi=true