Phase unwrapping based on a residual en-decoder network for phase images in Fourier domain Doppler optical coherence tomography

To solve the phase unwrapping problem for phase images in Fourier domain Doppler optical coherence tomography (DOCT), we propose a deep learning-based residual en-decoder network (REDN) method. In our approach, we reformulate the definition for obtaining the true phase as obtaining an integer multip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2020-04, Vol.11 (4), p.1760-1771
Hauptverfasser: Wu, Chuanchao, Qiao, Zhengyu, Zhang, Nan, Li, Xiaochen, Fan, Jingfan, Song, Hong, Ai, Danni, Yang, Jian, Huang, Yong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1771
container_issue 4
container_start_page 1760
container_title Biomedical optics express
container_volume 11
creator Wu, Chuanchao
Qiao, Zhengyu
Zhang, Nan
Li, Xiaochen
Fan, Jingfan
Song, Hong
Ai, Danni
Yang, Jian
Huang, Yong
description To solve the phase unwrapping problem for phase images in Fourier domain Doppler optical coherence tomography (DOCT), we propose a deep learning-based residual en-decoder network (REDN) method. In our approach, we reformulate the definition for obtaining the true phase as obtaining an integer multiple of 2 at each pixel by semantic segmentation. The proposed REDN architecture can provide recognition performance with pixel-level accuracy. To address the lack of phase images that are noise and wrapping free from DOCT systems for training, we used simulated images synthesized with DOCT phase image background noise features. An evaluation study on simulated images, DOCT phase images of phantom milk flowing in a plastic tube and a mouse artery, was performed. Meanwhile, a comparison study with recently proposed deep learning-based DeepLabV3+ and PhaseNet methods for signal phase unwrapping and traditional modified networking programming (MNP) method was also performed. Both visual inspection and quantitative metrical evaluation based on accuracy, specificity, sensitivity, root-mean-square-error, total-variation, and processing time demonstrate the robustness, effectiveness and superiority of our method. The proposed REDN method will benefit accurate and fast DOCT phase image-based diagnosis and evaluation when the detected phase is wrapped and will enrich the deep learning-based image processing platform for DOCT images.
doi_str_mv 10.1364/BOE.386101
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7173896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395635813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-df3171b5e15a75c6d3da722a64e0ee43a4b03913613c6ca9ea6c8580e27c3c963</originalsourceid><addsrcrecordid>eNpVkUFP3DAQha2qVUGUS39A5WNVKWBnEtt7qdQuuwUJCQ5wtrz27K4hsVM7AXHir9ewFIEv46f5_GbkR8hXzo44iOb498XiCJTgjH8g-zVvRSWZaj--ue-Rw5xvWDlNIxmoz2QPami4asQ-ebzcmox0CvfJDIMPG7oq2tEYqKEJs3eT6SiGyqGNDhMNON7HdEvXMdHh-a3vzQYz9YEu45R8YVzsTZEncRi6IuMweltcbNxiwmCRjrGPmzJw-_CFfFqbLuPhSz0g18vF1fy0Or_4czb_dV5ZkGqs3Bq45KsWeWtka4UDZ2RdG9EgQ2zANCsGs_IhHKywZoZGWNUqhrW0YGcCDsjPne8wrXp0FsOYTKeHVLZPDzoar993gt_qTbzTkktQzwbfXwxS_DthHnXvs8WuMwHjlHUNs1ZAqzgU9McOtSnmnHD9OoYz_RSaLqHpXWgF_vZ2sVf0f0TwD5twlLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395635813</pqid></control><display><type>article</type><title>Phase unwrapping based on a residual en-decoder network for phase images in Fourier domain Doppler optical coherence tomography</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wu, Chuanchao ; Qiao, Zhengyu ; Zhang, Nan ; Li, Xiaochen ; Fan, Jingfan ; Song, Hong ; Ai, Danni ; Yang, Jian ; Huang, Yong</creator><creatorcontrib>Wu, Chuanchao ; Qiao, Zhengyu ; Zhang, Nan ; Li, Xiaochen ; Fan, Jingfan ; Song, Hong ; Ai, Danni ; Yang, Jian ; Huang, Yong</creatorcontrib><description>To solve the phase unwrapping problem for phase images in Fourier domain Doppler optical coherence tomography (DOCT), we propose a deep learning-based residual en-decoder network (REDN) method. In our approach, we reformulate the definition for obtaining the true phase as obtaining an integer multiple of 2 at each pixel by semantic segmentation. The proposed REDN architecture can provide recognition performance with pixel-level accuracy. To address the lack of phase images that are noise and wrapping free from DOCT systems for training, we used simulated images synthesized with DOCT phase image background noise features. An evaluation study on simulated images, DOCT phase images of phantom milk flowing in a plastic tube and a mouse artery, was performed. Meanwhile, a comparison study with recently proposed deep learning-based DeepLabV3+ and PhaseNet methods for signal phase unwrapping and traditional modified networking programming (MNP) method was also performed. Both visual inspection and quantitative metrical evaluation based on accuracy, specificity, sensitivity, root-mean-square-error, total-variation, and processing time demonstrate the robustness, effectiveness and superiority of our method. The proposed REDN method will benefit accurate and fast DOCT phase image-based diagnosis and evaluation when the detected phase is wrapped and will enrich the deep learning-based image processing platform for DOCT images.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.386101</identifier><identifier>PMID: 32341846</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><ispartof>Biomedical optics express, 2020-04, Vol.11 (4), p.1760-1771</ispartof><rights>2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.</rights><rights>2020 Optical Society of America under the terms of the 2020 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-df3171b5e15a75c6d3da722a64e0ee43a4b03913613c6ca9ea6c8580e27c3c963</citedby><cites>FETCH-LOGICAL-c378t-df3171b5e15a75c6d3da722a64e0ee43a4b03913613c6ca9ea6c8580e27c3c963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173896/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173896/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32341846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Chuanchao</creatorcontrib><creatorcontrib>Qiao, Zhengyu</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Li, Xiaochen</creatorcontrib><creatorcontrib>Fan, Jingfan</creatorcontrib><creatorcontrib>Song, Hong</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><title>Phase unwrapping based on a residual en-decoder network for phase images in Fourier domain Doppler optical coherence tomography</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>To solve the phase unwrapping problem for phase images in Fourier domain Doppler optical coherence tomography (DOCT), we propose a deep learning-based residual en-decoder network (REDN) method. In our approach, we reformulate the definition for obtaining the true phase as obtaining an integer multiple of 2 at each pixel by semantic segmentation. The proposed REDN architecture can provide recognition performance with pixel-level accuracy. To address the lack of phase images that are noise and wrapping free from DOCT systems for training, we used simulated images synthesized with DOCT phase image background noise features. An evaluation study on simulated images, DOCT phase images of phantom milk flowing in a plastic tube and a mouse artery, was performed. Meanwhile, a comparison study with recently proposed deep learning-based DeepLabV3+ and PhaseNet methods for signal phase unwrapping and traditional modified networking programming (MNP) method was also performed. Both visual inspection and quantitative metrical evaluation based on accuracy, specificity, sensitivity, root-mean-square-error, total-variation, and processing time demonstrate the robustness, effectiveness and superiority of our method. The proposed REDN method will benefit accurate and fast DOCT phase image-based diagnosis and evaluation when the detected phase is wrapped and will enrich the deep learning-based image processing platform for DOCT images.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkUFP3DAQha2qVUGUS39A5WNVKWBnEtt7qdQuuwUJCQ5wtrz27K4hsVM7AXHir9ewFIEv46f5_GbkR8hXzo44iOb498XiCJTgjH8g-zVvRSWZaj--ue-Rw5xvWDlNIxmoz2QPami4asQ-ebzcmox0CvfJDIMPG7oq2tEYqKEJs3eT6SiGyqGNDhMNON7HdEvXMdHh-a3vzQYz9YEu45R8YVzsTZEncRi6IuMweltcbNxiwmCRjrGPmzJw-_CFfFqbLuPhSz0g18vF1fy0Or_4czb_dV5ZkGqs3Bq45KsWeWtka4UDZ2RdG9EgQ2zANCsGs_IhHKywZoZGWNUqhrW0YGcCDsjPne8wrXp0FsOYTKeHVLZPDzoar993gt_qTbzTkktQzwbfXwxS_DthHnXvs8WuMwHjlHUNs1ZAqzgU9McOtSnmnHD9OoYz_RSaLqHpXWgF_vZ2sVf0f0TwD5twlLM</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wu, Chuanchao</creator><creator>Qiao, Zhengyu</creator><creator>Zhang, Nan</creator><creator>Li, Xiaochen</creator><creator>Fan, Jingfan</creator><creator>Song, Hong</creator><creator>Ai, Danni</creator><creator>Yang, Jian</creator><creator>Huang, Yong</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200401</creationdate><title>Phase unwrapping based on a residual en-decoder network for phase images in Fourier domain Doppler optical coherence tomography</title><author>Wu, Chuanchao ; Qiao, Zhengyu ; Zhang, Nan ; Li, Xiaochen ; Fan, Jingfan ; Song, Hong ; Ai, Danni ; Yang, Jian ; Huang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-df3171b5e15a75c6d3da722a64e0ee43a4b03913613c6ca9ea6c8580e27c3c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chuanchao</creatorcontrib><creatorcontrib>Qiao, Zhengyu</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Li, Xiaochen</creatorcontrib><creatorcontrib>Fan, Jingfan</creatorcontrib><creatorcontrib>Song, Hong</creatorcontrib><creatorcontrib>Ai, Danni</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chuanchao</au><au>Qiao, Zhengyu</au><au>Zhang, Nan</au><au>Li, Xiaochen</au><au>Fan, Jingfan</au><au>Song, Hong</au><au>Ai, Danni</au><au>Yang, Jian</au><au>Huang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase unwrapping based on a residual en-decoder network for phase images in Fourier domain Doppler optical coherence tomography</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>11</volume><issue>4</issue><spage>1760</spage><epage>1771</epage><pages>1760-1771</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>To solve the phase unwrapping problem for phase images in Fourier domain Doppler optical coherence tomography (DOCT), we propose a deep learning-based residual en-decoder network (REDN) method. In our approach, we reformulate the definition for obtaining the true phase as obtaining an integer multiple of 2 at each pixel by semantic segmentation. The proposed REDN architecture can provide recognition performance with pixel-level accuracy. To address the lack of phase images that are noise and wrapping free from DOCT systems for training, we used simulated images synthesized with DOCT phase image background noise features. An evaluation study on simulated images, DOCT phase images of phantom milk flowing in a plastic tube and a mouse artery, was performed. Meanwhile, a comparison study with recently proposed deep learning-based DeepLabV3+ and PhaseNet methods for signal phase unwrapping and traditional modified networking programming (MNP) method was also performed. Both visual inspection and quantitative metrical evaluation based on accuracy, specificity, sensitivity, root-mean-square-error, total-variation, and processing time demonstrate the robustness, effectiveness and superiority of our method. The proposed REDN method will benefit accurate and fast DOCT phase image-based diagnosis and evaluation when the detected phase is wrapped and will enrich the deep learning-based image processing platform for DOCT images.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>32341846</pmid><doi>10.1364/BOE.386101</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2020-04, Vol.11 (4), p.1760-1771
issn 2156-7085
2156-7085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7173896
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Phase unwrapping based on a residual en-decoder network for phase images in Fourier domain Doppler optical coherence tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A48%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20unwrapping%20based%20on%20a%20residual%20en-decoder%20network%20for%20phase%20images%20in%20Fourier%20domain%20Doppler%20optical%20coherence%20tomography&rft.jtitle=Biomedical%20optics%20express&rft.au=Wu,%20Chuanchao&rft.date=2020-04-01&rft.volume=11&rft.issue=4&rft.spage=1760&rft.epage=1771&rft.pages=1760-1771&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.386101&rft_dat=%3Cproquest_pubme%3E2395635813%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395635813&rft_id=info:pmid/32341846&rfr_iscdi=true