Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy

The role of Mesenchymal-endothelial transition (MEndoT) in cardiac hypertrophy is unclear. To determine the difference between MEndoT-derived and coronary endothelial cells is essential for understanding the revascularizing strategy in cardiac repair. Using lineage tracing we demonstrated that MEndo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-04, Vol.10 (1), p.6652-6652, Article 6652
Hauptverfasser: Dong, Wenyan, Li, Ruiqi, Yang, Haili, Lu, Yan, Zhou, Longhai, Sun, Lei, Wang, Dianliang, Duan, Jinzhu
Format: Artikel
Sprache:eng
Schlagworte:
RNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6652
container_issue 1
container_start_page 6652
container_title Scientific reports
container_volume 10
creator Dong, Wenyan
Li, Ruiqi
Yang, Haili
Lu, Yan
Zhou, Longhai
Sun, Lei
Wang, Dianliang
Duan, Jinzhu
description The role of Mesenchymal-endothelial transition (MEndoT) in cardiac hypertrophy is unclear. To determine the difference between MEndoT-derived and coronary endothelial cells is essential for understanding the revascularizing strategy in cardiac repair. Using lineage tracing we demonstrated that MEndoT-derived cells exhibit highly heterogeneous which were characterized with highly expression of endothelial markers such as vascular endothelial cadherin(VECAD) and occludin but low expression of Tek receptor tyrosine kinase(Tek), isolectin B4, endothelial nitric oxide synthase(eNOS), von Willebrand factor(vWF), and CD31 after cardiac hypertrophy. RNA-sequencing showed altered expression of fibroblast lineage commitment genes in fibroblasts undergoing MEndoT. Compared with fibroblasts, the expression of p53 and most endothelial lineage commitment genes were upregulated in MEndoT-derived cells; however, the further analysis indicated that MEndoT-derived cells may represent an endothelial-like cell sub-population. Loss and gain function study demonstrated that MEndoT-derived cells are substantial sources of neovascularization, which can be manipulated to attenuate cardiac hypertrophy and preserve cardiac function by improving the expression of endothelial markers in MEndoT-derived cells. Moreover, fibroblasts undergoing MEndoT showed significantly upregulated anti-hypertrophic factors and downregulated pro-hypertrophic factors. Therefore MEndoT-derived cells are an endothelial-like cell population that can be regulated to treat cardiac hypertrophy by improving neovascularization and altering the paracrine effect of fibroblasts.
doi_str_mv 10.1038/s41598-020-63671-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7170918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392416056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-90399c77c05a8067e0257c5ecba976249b41dd1bd159cff6827a46b436cdc273</originalsourceid><addsrcrecordid>eNp9kV9r1jAUxosobsx9AS-k4I03nfnXpLkRZKgTJt7sPqTJ6duMNqlJOum3X-o75_TCEEjg_PKc5-SpqtcYXWBEu_eJ4VZ2DSKo4ZQL3HTPqlOCWNsQSsjzJ_eT6jylW1RWSyTD8mV1QgnFFDF6Ws3fIIE34zbrqQFvQx5hcnqqc9Q-ueyCbyxEdwe2NjBNqdZl10vI4PPOefhZRzisk84hbnXW8QC5HkKsjY7WaVOP2wIxx7CM26vqxaCnBOcP51l18_nTzeVVc_39y9fLj9eNaTHOjURUSiOEQa3uEBeASCtMC6bXUnDCZM-wtbi35QvMMPCOCM14zyg31hBBz6oPR9ll7WewpliNelJLdLOOmwraqb8r3o3qEO6UwAJJ3BWBdw8CMfxYIWU1u7SPrz2ENSlCJS0hILz3evsPehvW6Mt0O0UY5qjlhSJHysSQUoTh0QxGas9THfNUJU_1K0-1u3jzdIzHJ7_TKwA9AqmU_AHin97_kb0H3YytpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392416056</pqid></control><display><type>article</type><title>Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dong, Wenyan ; Li, Ruiqi ; Yang, Haili ; Lu, Yan ; Zhou, Longhai ; Sun, Lei ; Wang, Dianliang ; Duan, Jinzhu</creator><creatorcontrib>Dong, Wenyan ; Li, Ruiqi ; Yang, Haili ; Lu, Yan ; Zhou, Longhai ; Sun, Lei ; Wang, Dianliang ; Duan, Jinzhu</creatorcontrib><description>The role of Mesenchymal-endothelial transition (MEndoT) in cardiac hypertrophy is unclear. To determine the difference between MEndoT-derived and coronary endothelial cells is essential for understanding the revascularizing strategy in cardiac repair. Using lineage tracing we demonstrated that MEndoT-derived cells exhibit highly heterogeneous which were characterized with highly expression of endothelial markers such as vascular endothelial cadherin(VECAD) and occludin but low expression of Tek receptor tyrosine kinase(Tek), isolectin B4, endothelial nitric oxide synthase(eNOS), von Willebrand factor(vWF), and CD31 after cardiac hypertrophy. RNA-sequencing showed altered expression of fibroblast lineage commitment genes in fibroblasts undergoing MEndoT. Compared with fibroblasts, the expression of p53 and most endothelial lineage commitment genes were upregulated in MEndoT-derived cells; however, the further analysis indicated that MEndoT-derived cells may represent an endothelial-like cell sub-population. Loss and gain function study demonstrated that MEndoT-derived cells are substantial sources of neovascularization, which can be manipulated to attenuate cardiac hypertrophy and preserve cardiac function by improving the expression of endothelial markers in MEndoT-derived cells. Moreover, fibroblasts undergoing MEndoT showed significantly upregulated anti-hypertrophic factors and downregulated pro-hypertrophic factors. Therefore MEndoT-derived cells are an endothelial-like cell population that can be regulated to treat cardiac hypertrophy by improving neovascularization and altering the paracrine effect of fibroblasts.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-63671-8</identifier><identifier>PMID: 32313043</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/532 ; 692/4019 ; Animals ; Antigens, CD - genetics ; Antigens, CD - metabolism ; Cadherins ; Cadherins - genetics ; Cadherins - metabolism ; Cardiomegaly - genetics ; Cardiomegaly - metabolism ; Cardiomegaly - pathology ; Cell Lineage - genetics ; Cell Tracking ; Cell Transdifferentiation - genetics ; Disease Models, Animal ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Fibroblasts ; Fibroblasts - metabolism ; Fibroblasts - pathology ; Gene Expression Regulation ; Genes, Reporter ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Heart ; Humanities and Social Sciences ; Humans ; Hypertrophy ; Lectins - genetics ; Lectins - metabolism ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Mesenchymal Stem Cells - metabolism ; Mesenchymal Stem Cells - pathology ; Mesenchyme ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; multidisciplinary ; Neovascularization, Physiologic - genetics ; Nitric oxide ; Nitric Oxide Synthase Type III - genetics ; Nitric Oxide Synthase Type III - metabolism ; Nitric-oxide synthase ; Occludin - genetics ; Occludin - metabolism ; p53 Protein ; Paracrine signalling ; Platelet Endothelial Cell Adhesion Molecule-1 - genetics ; Platelet Endothelial Cell Adhesion Molecule-1 - metabolism ; Protein-tyrosine kinase receptors ; Receptor, TIE-2 - genetics ; Receptor, TIE-2 - metabolism ; Red Fluorescent Protein ; Ribonucleic acid ; RNA ; Science ; Science (multidisciplinary) ; Signal Transduction ; Vascularization ; Von Willebrand factor ; von Willebrand Factor - genetics ; von Willebrand Factor - metabolism</subject><ispartof>Scientific reports, 2020-04, Vol.10 (1), p.6652-6652, Article 6652</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-90399c77c05a8067e0257c5ecba976249b41dd1bd159cff6827a46b436cdc273</citedby><cites>FETCH-LOGICAL-c511t-90399c77c05a8067e0257c5ecba976249b41dd1bd159cff6827a46b436cdc273</cites><orcidid>0000-0003-3392-742X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170918/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170918/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32313043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Wenyan</creatorcontrib><creatorcontrib>Li, Ruiqi</creatorcontrib><creatorcontrib>Yang, Haili</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Zhou, Longhai</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Wang, Dianliang</creatorcontrib><creatorcontrib>Duan, Jinzhu</creatorcontrib><title>Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The role of Mesenchymal-endothelial transition (MEndoT) in cardiac hypertrophy is unclear. To determine the difference between MEndoT-derived and coronary endothelial cells is essential for understanding the revascularizing strategy in cardiac repair. Using lineage tracing we demonstrated that MEndoT-derived cells exhibit highly heterogeneous which were characterized with highly expression of endothelial markers such as vascular endothelial cadherin(VECAD) and occludin but low expression of Tek receptor tyrosine kinase(Tek), isolectin B4, endothelial nitric oxide synthase(eNOS), von Willebrand factor(vWF), and CD31 after cardiac hypertrophy. RNA-sequencing showed altered expression of fibroblast lineage commitment genes in fibroblasts undergoing MEndoT. Compared with fibroblasts, the expression of p53 and most endothelial lineage commitment genes were upregulated in MEndoT-derived cells; however, the further analysis indicated that MEndoT-derived cells may represent an endothelial-like cell sub-population. Loss and gain function study demonstrated that MEndoT-derived cells are substantial sources of neovascularization, which can be manipulated to attenuate cardiac hypertrophy and preserve cardiac function by improving the expression of endothelial markers in MEndoT-derived cells. Moreover, fibroblasts undergoing MEndoT showed significantly upregulated anti-hypertrophic factors and downregulated pro-hypertrophic factors. Therefore MEndoT-derived cells are an endothelial-like cell population that can be regulated to treat cardiac hypertrophy by improving neovascularization and altering the paracrine effect of fibroblasts.</description><subject>631/532</subject><subject>692/4019</subject><subject>Animals</subject><subject>Antigens, CD - genetics</subject><subject>Antigens, CD - metabolism</subject><subject>Cadherins</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cardiomegaly - genetics</subject><subject>Cardiomegaly - metabolism</subject><subject>Cardiomegaly - pathology</subject><subject>Cell Lineage - genetics</subject><subject>Cell Tracking</subject><subject>Cell Transdifferentiation - genetics</subject><subject>Disease Models, Animal</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Heart</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Lectins - genetics</subject><subject>Lectins - metabolism</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mesenchymal Stem Cells - pathology</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>multidisciplinary</subject><subject>Neovascularization, Physiologic - genetics</subject><subject>Nitric oxide</subject><subject>Nitric Oxide Synthase Type III - genetics</subject><subject>Nitric Oxide Synthase Type III - metabolism</subject><subject>Nitric-oxide synthase</subject><subject>Occludin - genetics</subject><subject>Occludin - metabolism</subject><subject>p53 Protein</subject><subject>Paracrine signalling</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - genetics</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - metabolism</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Receptor, TIE-2 - genetics</subject><subject>Receptor, TIE-2 - metabolism</subject><subject>Red Fluorescent Protein</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Vascularization</subject><subject>Von Willebrand factor</subject><subject>von Willebrand Factor - genetics</subject><subject>von Willebrand Factor - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV9r1jAUxosobsx9AS-k4I03nfnXpLkRZKgTJt7sPqTJ6duMNqlJOum3X-o75_TCEEjg_PKc5-SpqtcYXWBEu_eJ4VZ2DSKo4ZQL3HTPqlOCWNsQSsjzJ_eT6jylW1RWSyTD8mV1QgnFFDF6Ws3fIIE34zbrqQFvQx5hcnqqc9Q-ueyCbyxEdwe2NjBNqdZl10vI4PPOefhZRzisk84hbnXW8QC5HkKsjY7WaVOP2wIxx7CM26vqxaCnBOcP51l18_nTzeVVc_39y9fLj9eNaTHOjURUSiOEQa3uEBeASCtMC6bXUnDCZM-wtbi35QvMMPCOCM14zyg31hBBz6oPR9ll7WewpliNelJLdLOOmwraqb8r3o3qEO6UwAJJ3BWBdw8CMfxYIWU1u7SPrz2ENSlCJS0hILz3evsPehvW6Mt0O0UY5qjlhSJHysSQUoTh0QxGas9THfNUJU_1K0-1u3jzdIzHJ7_TKwA9AqmU_AHin97_kb0H3YytpQ</recordid><startdate>20200420</startdate><enddate>20200420</enddate><creator>Dong, Wenyan</creator><creator>Li, Ruiqi</creator><creator>Yang, Haili</creator><creator>Lu, Yan</creator><creator>Zhou, Longhai</creator><creator>Sun, Lei</creator><creator>Wang, Dianliang</creator><creator>Duan, Jinzhu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3392-742X</orcidid></search><sort><creationdate>20200420</creationdate><title>Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy</title><author>Dong, Wenyan ; Li, Ruiqi ; Yang, Haili ; Lu, Yan ; Zhou, Longhai ; Sun, Lei ; Wang, Dianliang ; Duan, Jinzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-90399c77c05a8067e0257c5ecba976249b41dd1bd159cff6827a46b436cdc273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/532</topic><topic>692/4019</topic><topic>Animals</topic><topic>Antigens, CD - genetics</topic><topic>Antigens, CD - metabolism</topic><topic>Cadherins</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cardiomegaly - genetics</topic><topic>Cardiomegaly - metabolism</topic><topic>Cardiomegaly - pathology</topic><topic>Cell Lineage - genetics</topic><topic>Cell Tracking</topic><topic>Cell Transdifferentiation - genetics</topic><topic>Disease Models, Animal</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Heart</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Lectins - genetics</topic><topic>Lectins - metabolism</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mesenchymal Stem Cells - pathology</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>multidisciplinary</topic><topic>Neovascularization, Physiologic - genetics</topic><topic>Nitric oxide</topic><topic>Nitric Oxide Synthase Type III - genetics</topic><topic>Nitric Oxide Synthase Type III - metabolism</topic><topic>Nitric-oxide synthase</topic><topic>Occludin - genetics</topic><topic>Occludin - metabolism</topic><topic>p53 Protein</topic><topic>Paracrine signalling</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - genetics</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - metabolism</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Receptor, TIE-2 - genetics</topic><topic>Receptor, TIE-2 - metabolism</topic><topic>Red Fluorescent Protein</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Vascularization</topic><topic>Von Willebrand factor</topic><topic>von Willebrand Factor - genetics</topic><topic>von Willebrand Factor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Wenyan</creatorcontrib><creatorcontrib>Li, Ruiqi</creatorcontrib><creatorcontrib>Yang, Haili</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Zhou, Longhai</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Wang, Dianliang</creatorcontrib><creatorcontrib>Duan, Jinzhu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Wenyan</au><au>Li, Ruiqi</au><au>Yang, Haili</au><au>Lu, Yan</au><au>Zhou, Longhai</au><au>Sun, Lei</au><au>Wang, Dianliang</au><au>Duan, Jinzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-04-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>6652</spage><epage>6652</epage><pages>6652-6652</pages><artnum>6652</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The role of Mesenchymal-endothelial transition (MEndoT) in cardiac hypertrophy is unclear. To determine the difference between MEndoT-derived and coronary endothelial cells is essential for understanding the revascularizing strategy in cardiac repair. Using lineage tracing we demonstrated that MEndoT-derived cells exhibit highly heterogeneous which were characterized with highly expression of endothelial markers such as vascular endothelial cadherin(VECAD) and occludin but low expression of Tek receptor tyrosine kinase(Tek), isolectin B4, endothelial nitric oxide synthase(eNOS), von Willebrand factor(vWF), and CD31 after cardiac hypertrophy. RNA-sequencing showed altered expression of fibroblast lineage commitment genes in fibroblasts undergoing MEndoT. Compared with fibroblasts, the expression of p53 and most endothelial lineage commitment genes were upregulated in MEndoT-derived cells; however, the further analysis indicated that MEndoT-derived cells may represent an endothelial-like cell sub-population. Loss and gain function study demonstrated that MEndoT-derived cells are substantial sources of neovascularization, which can be manipulated to attenuate cardiac hypertrophy and preserve cardiac function by improving the expression of endothelial markers in MEndoT-derived cells. Moreover, fibroblasts undergoing MEndoT showed significantly upregulated anti-hypertrophic factors and downregulated pro-hypertrophic factors. Therefore MEndoT-derived cells are an endothelial-like cell population that can be regulated to treat cardiac hypertrophy by improving neovascularization and altering the paracrine effect of fibroblasts.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32313043</pmid><doi>10.1038/s41598-020-63671-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3392-742X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-04, Vol.10 (1), p.6652-6652, Article 6652
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7170918
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/532
692/4019
Animals
Antigens, CD - genetics
Antigens, CD - metabolism
Cadherins
Cadherins - genetics
Cadherins - metabolism
Cardiomegaly - genetics
Cardiomegaly - metabolism
Cardiomegaly - pathology
Cell Lineage - genetics
Cell Tracking
Cell Transdifferentiation - genetics
Disease Models, Animal
Endothelial cells
Endothelial Cells - metabolism
Endothelial Cells - pathology
Fibroblasts
Fibroblasts - metabolism
Fibroblasts - pathology
Gene Expression Regulation
Genes, Reporter
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Heart
Humanities and Social Sciences
Humans
Hypertrophy
Lectins - genetics
Lectins - metabolism
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Mesenchymal Stem Cells - metabolism
Mesenchymal Stem Cells - pathology
Mesenchyme
Mice
Mice, Inbred C57BL
Mice, Transgenic
multidisciplinary
Neovascularization, Physiologic - genetics
Nitric oxide
Nitric Oxide Synthase Type III - genetics
Nitric Oxide Synthase Type III - metabolism
Nitric-oxide synthase
Occludin - genetics
Occludin - metabolism
p53 Protein
Paracrine signalling
Platelet Endothelial Cell Adhesion Molecule-1 - genetics
Platelet Endothelial Cell Adhesion Molecule-1 - metabolism
Protein-tyrosine kinase receptors
Receptor, TIE-2 - genetics
Receptor, TIE-2 - metabolism
Red Fluorescent Protein
Ribonucleic acid
RNA
Science
Science (multidisciplinary)
Signal Transduction
Vascularization
Von Willebrand factor
von Willebrand Factor - genetics
von Willebrand Factor - metabolism
title Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesenchymal-endothelial%20transition-derived%20cells%20as%20a%20potential%20new%20regulatory%20target%20for%20cardiac%20hypertrophy&rft.jtitle=Scientific%20reports&rft.au=Dong,%20Wenyan&rft.date=2020-04-20&rft.volume=10&rft.issue=1&rft.spage=6652&rft.epage=6652&rft.pages=6652-6652&rft.artnum=6652&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-63671-8&rft_dat=%3Cproquest_pubme%3E2392416056%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392416056&rft_id=info:pmid/32313043&rfr_iscdi=true