Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers
Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphat...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2020-04, Vol.295 (16), p.5519-5532 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5532 |
---|---|
container_issue | 16 |
container_start_page | 5519 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | Theodorou, Ilias Courtin, Pascal Sadovskaya, Irina Palussière, Simon Fenaille, François Mahony, Jennifer Chapot-Chartier, Marie-Pierre van Sinderen, Douwe |
description | Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin. |
doi_str_mv | 10.1074/jbc.RA119.010844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7170526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192581748567X</els_id><sourcerecordid>2377345195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-b77c2c5b628c3f7bba58e2cf4f392bf66d0226875cb5925990d878e70d1d651a3</originalsourceid><addsrcrecordid>eNp1UcFq3DAQFaWh2aa991R0bA7eSrJl2T0UltA2hYVASKA3IY_HsYLX2kpaB_99tXEa2kJ10AzSe2948wh5x9maM1V8vG9gfb3hvF4zzqqieEFWqeZZLvmPl2TFmOBZLWR1Sl6HcM_SKWr-ipzmgpd1zfiK-JveI9LWhmhHiPRumMGFeTDRupHuTewfzByo8UjtOLlhwjY1NPaJg-D8gnMd3RqIDhzAIdAh9TZQwGGgDyZdj6p7N8w79OENOenMEPDtUz0jt1-_3FxcZturb98vNtsMiorHrFEKBMimFBXknWoaIysU0BVdXoumK8uWCVFWSkIjk8dkp61UhYq1vC0lN_kZ-bzo7g_NDlvAMXoz6L23O-Nn7YzVf_-Mttd3btKKKyZFmQTOF4H-H9rlZquPb0zINElUE0_YD0_DvPt5wBD1zobjAsyI7hC0yJXKC8lrmaBsgYJ3IXjsnrU508dYdYpVP8aql1gT5f2fVp4Jv3NMgE8LANNCJ4teB7A4ArbWI0TdOvt_9V-9JLSy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377345195</pqid></control><display><type>article</type><title>Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Theodorou, Ilias ; Courtin, Pascal ; Sadovskaya, Irina ; Palussière, Simon ; Fenaille, François ; Mahony, Jennifer ; Chapot-Chartier, Marie-Pierre ; van Sinderen, Douwe</creator><creatorcontrib>Theodorou, Ilias ; Courtin, Pascal ; Sadovskaya, Irina ; Palussière, Simon ; Fenaille, François ; Mahony, Jennifer ; Chapot-Chartier, Marie-Pierre ; van Sinderen, Douwe</creatorcontrib><description>Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.010844</identifier><identifier>PMID: 32169901</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; bacteriophage ; Biochemistry ; Biochemistry, Molecular Biology ; cell wall ; Cell Wall - metabolism ; Deoxy Sugars - metabolism ; flippase ; flippases ; Galactose - metabolism ; genomics ; glycobiology ; Glycobiology and Extracellular Matrices ; glycopolymer ; glycopolymers ; Glycosylation ; glycosyltransferase ; lactic acid bacteria ; Lactococcus lactis - genetics ; Lactococcus lactis - metabolism ; Life Sciences ; Lipopolysaccharides - metabolism ; lipoteichoic acid (LTA) ; Mannans - metabolism ; peptidoglycan ; phage receptor ; Teichoic Acids - metabolism</subject><ispartof>The Journal of biological chemistry, 2020-04, Vol.295 (16), p.5519-5532</ispartof><rights>2020 © 2020 Theodorou et al.</rights><rights>2020 Theodorou et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 Theodorou et al. 2020 Theodorou et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-b77c2c5b628c3f7bba58e2cf4f392bf66d0226875cb5925990d878e70d1d651a3</citedby><cites>FETCH-LOGICAL-c481t-b77c2c5b628c3f7bba58e2cf4f392bf66d0226875cb5925990d878e70d1d651a3</cites><orcidid>0000-0001-6787-4149 ; 0000-0002-4947-0519 ; 0000-0003-1823-7957 ; 0000-0002-7574-3824 ; 0000-0001-5846-6303 ; 0000-0001-8731-8318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170526/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170526/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32169901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02565128$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Theodorou, Ilias</creatorcontrib><creatorcontrib>Courtin, Pascal</creatorcontrib><creatorcontrib>Sadovskaya, Irina</creatorcontrib><creatorcontrib>Palussière, Simon</creatorcontrib><creatorcontrib>Fenaille, François</creatorcontrib><creatorcontrib>Mahony, Jennifer</creatorcontrib><creatorcontrib>Chapot-Chartier, Marie-Pierre</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><title>Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>bacteriophage</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>cell wall</subject><subject>Cell Wall - metabolism</subject><subject>Deoxy Sugars - metabolism</subject><subject>flippase</subject><subject>flippases</subject><subject>Galactose - metabolism</subject><subject>genomics</subject><subject>glycobiology</subject><subject>Glycobiology and Extracellular Matrices</subject><subject>glycopolymer</subject><subject>glycopolymers</subject><subject>Glycosylation</subject><subject>glycosyltransferase</subject><subject>lactic acid bacteria</subject><subject>Lactococcus lactis - genetics</subject><subject>Lactococcus lactis - metabolism</subject><subject>Life Sciences</subject><subject>Lipopolysaccharides - metabolism</subject><subject>lipoteichoic acid (LTA)</subject><subject>Mannans - metabolism</subject><subject>peptidoglycan</subject><subject>phage receptor</subject><subject>Teichoic Acids - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UcFq3DAQFaWh2aa991R0bA7eSrJl2T0UltA2hYVASKA3IY_HsYLX2kpaB_99tXEa2kJ10AzSe2948wh5x9maM1V8vG9gfb3hvF4zzqqieEFWqeZZLvmPl2TFmOBZLWR1Sl6HcM_SKWr-ipzmgpd1zfiK-JveI9LWhmhHiPRumMGFeTDRupHuTewfzByo8UjtOLlhwjY1NPaJg-D8gnMd3RqIDhzAIdAh9TZQwGGgDyZdj6p7N8w79OENOenMEPDtUz0jt1-_3FxcZturb98vNtsMiorHrFEKBMimFBXknWoaIysU0BVdXoumK8uWCVFWSkIjk8dkp61UhYq1vC0lN_kZ-bzo7g_NDlvAMXoz6L23O-Nn7YzVf_-Mttd3btKKKyZFmQTOF4H-H9rlZquPb0zINElUE0_YD0_DvPt5wBD1zobjAsyI7hC0yJXKC8lrmaBsgYJ3IXjsnrU508dYdYpVP8aql1gT5f2fVp4Jv3NMgE8LANNCJ4teB7A4ArbWI0TdOvt_9V-9JLSy</recordid><startdate>20200417</startdate><enddate>20200417</enddate><creator>Theodorou, Ilias</creator><creator>Courtin, Pascal</creator><creator>Sadovskaya, Irina</creator><creator>Palussière, Simon</creator><creator>Fenaille, François</creator><creator>Mahony, Jennifer</creator><creator>Chapot-Chartier, Marie-Pierre</creator><creator>van Sinderen, Douwe</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6787-4149</orcidid><orcidid>https://orcid.org/0000-0002-4947-0519</orcidid><orcidid>https://orcid.org/0000-0003-1823-7957</orcidid><orcidid>https://orcid.org/0000-0002-7574-3824</orcidid><orcidid>https://orcid.org/0000-0001-5846-6303</orcidid><orcidid>https://orcid.org/0000-0001-8731-8318</orcidid></search><sort><creationdate>20200417</creationdate><title>Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers</title><author>Theodorou, Ilias ; Courtin, Pascal ; Sadovskaya, Irina ; Palussière, Simon ; Fenaille, François ; Mahony, Jennifer ; Chapot-Chartier, Marie-Pierre ; van Sinderen, Douwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-b77c2c5b628c3f7bba58e2cf4f392bf66d0226875cb5925990d878e70d1d651a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>bacteriophage</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>cell wall</topic><topic>Cell Wall - metabolism</topic><topic>Deoxy Sugars - metabolism</topic><topic>flippase</topic><topic>flippases</topic><topic>Galactose - metabolism</topic><topic>genomics</topic><topic>glycobiology</topic><topic>Glycobiology and Extracellular Matrices</topic><topic>glycopolymer</topic><topic>glycopolymers</topic><topic>Glycosylation</topic><topic>glycosyltransferase</topic><topic>lactic acid bacteria</topic><topic>Lactococcus lactis - genetics</topic><topic>Lactococcus lactis - metabolism</topic><topic>Life Sciences</topic><topic>Lipopolysaccharides - metabolism</topic><topic>lipoteichoic acid (LTA)</topic><topic>Mannans - metabolism</topic><topic>peptidoglycan</topic><topic>phage receptor</topic><topic>Teichoic Acids - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theodorou, Ilias</creatorcontrib><creatorcontrib>Courtin, Pascal</creatorcontrib><creatorcontrib>Sadovskaya, Irina</creatorcontrib><creatorcontrib>Palussière, Simon</creatorcontrib><creatorcontrib>Fenaille, François</creatorcontrib><creatorcontrib>Mahony, Jennifer</creatorcontrib><creatorcontrib>Chapot-Chartier, Marie-Pierre</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theodorou, Ilias</au><au>Courtin, Pascal</au><au>Sadovskaya, Irina</au><au>Palussière, Simon</au><au>Fenaille, François</au><au>Mahony, Jennifer</au><au>Chapot-Chartier, Marie-Pierre</au><au>van Sinderen, Douwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-04-17</date><risdate>2020</risdate><volume>295</volume><issue>16</issue><spage>5519</spage><epage>5532</epage><pages>5519-5532</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32169901</pmid><doi>10.1074/jbc.RA119.010844</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6787-4149</orcidid><orcidid>https://orcid.org/0000-0002-4947-0519</orcidid><orcidid>https://orcid.org/0000-0003-1823-7957</orcidid><orcidid>https://orcid.org/0000-0002-7574-3824</orcidid><orcidid>https://orcid.org/0000-0001-5846-6303</orcidid><orcidid>https://orcid.org/0000-0001-8731-8318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-04, Vol.295 (16), p.5519-5532 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7170526 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Bacterial Proteins - genetics Bacterial Proteins - metabolism bacteriophage Biochemistry Biochemistry, Molecular Biology cell wall Cell Wall - metabolism Deoxy Sugars - metabolism flippase flippases Galactose - metabolism genomics glycobiology Glycobiology and Extracellular Matrices glycopolymer glycopolymers Glycosylation glycosyltransferase lactic acid bacteria Lactococcus lactis - genetics Lactococcus lactis - metabolism Life Sciences Lipopolysaccharides - metabolism lipoteichoic acid (LTA) Mannans - metabolism peptidoglycan phage receptor Teichoic Acids - metabolism |
title | Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20distinct%20glycosylation%20pathways%20are%20involved%20in%20the%20decoration%20of%20Lactococcus%20lactis%20cell%20wall%20glycopolymers&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Theodorou,%20Ilias&rft.date=2020-04-17&rft.volume=295&rft.issue=16&rft.spage=5519&rft.epage=5532&rft.pages=5519-5532&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.010844&rft_dat=%3Cproquest_pubme%3E2377345195%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377345195&rft_id=info:pmid/32169901&rft_els_id=S002192581748567X&rfr_iscdi=true |