Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers

Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-04, Vol.295 (16), p.5519-5532
Hauptverfasser: Theodorou, Ilias, Courtin, Pascal, Sadovskaya, Irina, Palussière, Simon, Fenaille, François, Mahony, Jennifer, Chapot-Chartier, Marie-Pierre, van Sinderen, Douwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5532
container_issue 16
container_start_page 5519
container_title The Journal of biological chemistry
container_volume 295
creator Theodorou, Ilias
Courtin, Pascal
Sadovskaya, Irina
Palussière, Simon
Fenaille, François
Mahony, Jennifer
Chapot-Chartier, Marie-Pierre
van Sinderen, Douwe
description Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.
doi_str_mv 10.1074/jbc.RA119.010844
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7170526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192581748567X</els_id><sourcerecordid>2377345195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-b77c2c5b628c3f7bba58e2cf4f392bf66d0226875cb5925990d878e70d1d651a3</originalsourceid><addsrcrecordid>eNp1UcFq3DAQFaWh2aa991R0bA7eSrJl2T0UltA2hYVASKA3IY_HsYLX2kpaB_99tXEa2kJ10AzSe2948wh5x9maM1V8vG9gfb3hvF4zzqqieEFWqeZZLvmPl2TFmOBZLWR1Sl6HcM_SKWr-ipzmgpd1zfiK-JveI9LWhmhHiPRumMGFeTDRupHuTewfzByo8UjtOLlhwjY1NPaJg-D8gnMd3RqIDhzAIdAh9TZQwGGgDyZdj6p7N8w79OENOenMEPDtUz0jt1-_3FxcZturb98vNtsMiorHrFEKBMimFBXknWoaIysU0BVdXoumK8uWCVFWSkIjk8dkp61UhYq1vC0lN_kZ-bzo7g_NDlvAMXoz6L23O-Nn7YzVf_-Mttd3btKKKyZFmQTOF4H-H9rlZquPb0zINElUE0_YD0_DvPt5wBD1zobjAsyI7hC0yJXKC8lrmaBsgYJ3IXjsnrU508dYdYpVP8aql1gT5f2fVp4Jv3NMgE8LANNCJ4teB7A4ArbWI0TdOvt_9V-9JLSy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377345195</pqid></control><display><type>article</type><title>Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Theodorou, Ilias ; Courtin, Pascal ; Sadovskaya, Irina ; Palussière, Simon ; Fenaille, François ; Mahony, Jennifer ; Chapot-Chartier, Marie-Pierre ; van Sinderen, Douwe</creator><creatorcontrib>Theodorou, Ilias ; Courtin, Pascal ; Sadovskaya, Irina ; Palussière, Simon ; Fenaille, François ; Mahony, Jennifer ; Chapot-Chartier, Marie-Pierre ; van Sinderen, Douwe</creatorcontrib><description>Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.010844</identifier><identifier>PMID: 32169901</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; bacteriophage ; Biochemistry ; Biochemistry, Molecular Biology ; cell wall ; Cell Wall - metabolism ; Deoxy Sugars - metabolism ; flippase ; flippases ; Galactose - metabolism ; genomics ; glycobiology ; Glycobiology and Extracellular Matrices ; glycopolymer ; glycopolymers ; Glycosylation ; glycosyltransferase ; lactic acid bacteria ; Lactococcus lactis - genetics ; Lactococcus lactis - metabolism ; Life Sciences ; Lipopolysaccharides - metabolism ; lipoteichoic acid (LTA) ; Mannans - metabolism ; peptidoglycan ; phage receptor ; Teichoic Acids - metabolism</subject><ispartof>The Journal of biological chemistry, 2020-04, Vol.295 (16), p.5519-5532</ispartof><rights>2020 © 2020 Theodorou et al.</rights><rights>2020 Theodorou et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 Theodorou et al. 2020 Theodorou et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-b77c2c5b628c3f7bba58e2cf4f392bf66d0226875cb5925990d878e70d1d651a3</citedby><cites>FETCH-LOGICAL-c481t-b77c2c5b628c3f7bba58e2cf4f392bf66d0226875cb5925990d878e70d1d651a3</cites><orcidid>0000-0001-6787-4149 ; 0000-0002-4947-0519 ; 0000-0003-1823-7957 ; 0000-0002-7574-3824 ; 0000-0001-5846-6303 ; 0000-0001-8731-8318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170526/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170526/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32169901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02565128$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Theodorou, Ilias</creatorcontrib><creatorcontrib>Courtin, Pascal</creatorcontrib><creatorcontrib>Sadovskaya, Irina</creatorcontrib><creatorcontrib>Palussière, Simon</creatorcontrib><creatorcontrib>Fenaille, François</creatorcontrib><creatorcontrib>Mahony, Jennifer</creatorcontrib><creatorcontrib>Chapot-Chartier, Marie-Pierre</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><title>Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>bacteriophage</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>cell wall</subject><subject>Cell Wall - metabolism</subject><subject>Deoxy Sugars - metabolism</subject><subject>flippase</subject><subject>flippases</subject><subject>Galactose - metabolism</subject><subject>genomics</subject><subject>glycobiology</subject><subject>Glycobiology and Extracellular Matrices</subject><subject>glycopolymer</subject><subject>glycopolymers</subject><subject>Glycosylation</subject><subject>glycosyltransferase</subject><subject>lactic acid bacteria</subject><subject>Lactococcus lactis - genetics</subject><subject>Lactococcus lactis - metabolism</subject><subject>Life Sciences</subject><subject>Lipopolysaccharides - metabolism</subject><subject>lipoteichoic acid (LTA)</subject><subject>Mannans - metabolism</subject><subject>peptidoglycan</subject><subject>phage receptor</subject><subject>Teichoic Acids - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UcFq3DAQFaWh2aa991R0bA7eSrJl2T0UltA2hYVASKA3IY_HsYLX2kpaB_99tXEa2kJ10AzSe2948wh5x9maM1V8vG9gfb3hvF4zzqqieEFWqeZZLvmPl2TFmOBZLWR1Sl6HcM_SKWr-ipzmgpd1zfiK-JveI9LWhmhHiPRumMGFeTDRupHuTewfzByo8UjtOLlhwjY1NPaJg-D8gnMd3RqIDhzAIdAh9TZQwGGgDyZdj6p7N8w79OENOenMEPDtUz0jt1-_3FxcZturb98vNtsMiorHrFEKBMimFBXknWoaIysU0BVdXoumK8uWCVFWSkIjk8dkp61UhYq1vC0lN_kZ-bzo7g_NDlvAMXoz6L23O-Nn7YzVf_-Mttd3btKKKyZFmQTOF4H-H9rlZquPb0zINElUE0_YD0_DvPt5wBD1zobjAsyI7hC0yJXKC8lrmaBsgYJ3IXjsnrU508dYdYpVP8aql1gT5f2fVp4Jv3NMgE8LANNCJ4teB7A4ArbWI0TdOvt_9V-9JLSy</recordid><startdate>20200417</startdate><enddate>20200417</enddate><creator>Theodorou, Ilias</creator><creator>Courtin, Pascal</creator><creator>Sadovskaya, Irina</creator><creator>Palussière, Simon</creator><creator>Fenaille, François</creator><creator>Mahony, Jennifer</creator><creator>Chapot-Chartier, Marie-Pierre</creator><creator>van Sinderen, Douwe</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6787-4149</orcidid><orcidid>https://orcid.org/0000-0002-4947-0519</orcidid><orcidid>https://orcid.org/0000-0003-1823-7957</orcidid><orcidid>https://orcid.org/0000-0002-7574-3824</orcidid><orcidid>https://orcid.org/0000-0001-5846-6303</orcidid><orcidid>https://orcid.org/0000-0001-8731-8318</orcidid></search><sort><creationdate>20200417</creationdate><title>Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers</title><author>Theodorou, Ilias ; Courtin, Pascal ; Sadovskaya, Irina ; Palussière, Simon ; Fenaille, François ; Mahony, Jennifer ; Chapot-Chartier, Marie-Pierre ; van Sinderen, Douwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-b77c2c5b628c3f7bba58e2cf4f392bf66d0226875cb5925990d878e70d1d651a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>bacteriophage</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>cell wall</topic><topic>Cell Wall - metabolism</topic><topic>Deoxy Sugars - metabolism</topic><topic>flippase</topic><topic>flippases</topic><topic>Galactose - metabolism</topic><topic>genomics</topic><topic>glycobiology</topic><topic>Glycobiology and Extracellular Matrices</topic><topic>glycopolymer</topic><topic>glycopolymers</topic><topic>Glycosylation</topic><topic>glycosyltransferase</topic><topic>lactic acid bacteria</topic><topic>Lactococcus lactis - genetics</topic><topic>Lactococcus lactis - metabolism</topic><topic>Life Sciences</topic><topic>Lipopolysaccharides - metabolism</topic><topic>lipoteichoic acid (LTA)</topic><topic>Mannans - metabolism</topic><topic>peptidoglycan</topic><topic>phage receptor</topic><topic>Teichoic Acids - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theodorou, Ilias</creatorcontrib><creatorcontrib>Courtin, Pascal</creatorcontrib><creatorcontrib>Sadovskaya, Irina</creatorcontrib><creatorcontrib>Palussière, Simon</creatorcontrib><creatorcontrib>Fenaille, François</creatorcontrib><creatorcontrib>Mahony, Jennifer</creatorcontrib><creatorcontrib>Chapot-Chartier, Marie-Pierre</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theodorou, Ilias</au><au>Courtin, Pascal</au><au>Sadovskaya, Irina</au><au>Palussière, Simon</au><au>Fenaille, François</au><au>Mahony, Jennifer</au><au>Chapot-Chartier, Marie-Pierre</au><au>van Sinderen, Douwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-04-17</date><risdate>2020</risdate><volume>295</volume><issue>16</issue><spage>5519</spage><epage>5532</epage><pages>5519-5532</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32169901</pmid><doi>10.1074/jbc.RA119.010844</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6787-4149</orcidid><orcidid>https://orcid.org/0000-0002-4947-0519</orcidid><orcidid>https://orcid.org/0000-0003-1823-7957</orcidid><orcidid>https://orcid.org/0000-0002-7574-3824</orcidid><orcidid>https://orcid.org/0000-0001-5846-6303</orcidid><orcidid>https://orcid.org/0000-0001-8731-8318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-04, Vol.295 (16), p.5519-5532
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7170526
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
bacteriophage
Biochemistry
Biochemistry, Molecular Biology
cell wall
Cell Wall - metabolism
Deoxy Sugars - metabolism
flippase
flippases
Galactose - metabolism
genomics
glycobiology
Glycobiology and Extracellular Matrices
glycopolymer
glycopolymers
Glycosylation
glycosyltransferase
lactic acid bacteria
Lactococcus lactis - genetics
Lactococcus lactis - metabolism
Life Sciences
Lipopolysaccharides - metabolism
lipoteichoic acid (LTA)
Mannans - metabolism
peptidoglycan
phage receptor
Teichoic Acids - metabolism
title Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20distinct%20glycosylation%20pathways%20are%20involved%20in%20the%20decoration%20of%20Lactococcus%20lactis%20cell%20wall%20glycopolymers&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Theodorou,%20Ilias&rft.date=2020-04-17&rft.volume=295&rft.issue=16&rft.spage=5519&rft.epage=5532&rft.pages=5519-5532&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.010844&rft_dat=%3Cproquest_pubme%3E2377345195%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377345195&rft_id=info:pmid/32169901&rft_els_id=S002192581748567X&rfr_iscdi=true