Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis

The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-12, Vol.13 (12), p.13853-13865
Hauptverfasser: Morad, Golnaz, Carman, Christopher V, Hagedorn, Elliott J, Perlin, Julie R, Zon, Leonard I, Mustafaoglu, Nur, Park, Tae-Eun, Ingber, Donald E, Daisy, Cassandra C, Moses, Marsha A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13865
container_issue 12
container_start_page 13853
container_title ACS nano
container_volume 13
creator Morad, Golnaz
Carman, Christopher V
Hagedorn, Elliott J
Perlin, Julie R
Zon, Leonard I
Mustafaoglu, Nur
Park, Tae-Eun
Ingber, Donald E
Daisy, Cassandra C
Moses, Marsha A
description The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies.
doi_str_mv 10.1021/acsnano.9b04397
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7169949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284554109</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-724128146dcd70dc338f72ddac460c5496002d7b2b7779b7c10add8184024f03</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMo3tfuJEtBqkmaNs1GcLyD4GYQNxJOk4wT6SSatIPufAff0Cexw4yDLlydA-c7_7n8CO1RckQJo8egkwcfjmRNeC7FCtqkMi8zUpUPq8u8oBtoK6VnQgpRiXIdbeSUC8lyuYkeh90kxOzcRje1Bl-8tRG0bZqugYjvbXK6sQkPogU9xu3Y4hvfgm7xoAnBfH18DiI4jwcQo7MRTx3gYQSf9Hsbkks7aG0ETbK7i7iNhpcXw7Pr7Pbu6ubs9DYDzmSbCcYpqygvjTaCGJ3n1UgwY0DzkuiCy5IQZkTNaiGErIWmBIypaMUJ4yOSb6OTuexLV0-s0db3VzTqJboJxHcVwKm_Fe_G6ilMlaCllFz2AgcLgRheO5taNXFp9gbwNnRJMVbxouCUzNDjOapjSCna0XIMJWrmiVp4ohae9B37v7db8j8m9MDhHOg71XPoou9_9a_cN7uXmmY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284554109</pqid></control><display><type>article</type><title>Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Morad, Golnaz ; Carman, Christopher V ; Hagedorn, Elliott J ; Perlin, Julie R ; Zon, Leonard I ; Mustafaoglu, Nur ; Park, Tae-Eun ; Ingber, Donald E ; Daisy, Cassandra C ; Moses, Marsha A</creator><creatorcontrib>Morad, Golnaz ; Carman, Christopher V ; Hagedorn, Elliott J ; Perlin, Julie R ; Zon, Leonard I ; Mustafaoglu, Nur ; Park, Tae-Eun ; Ingber, Donald E ; Daisy, Cassandra C ; Moses, Marsha A</creatorcontrib><description>The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b04397</identifier><identifier>PMID: 31479239</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Blood-Brain Barrier - metabolism ; Brain Neoplasms - secondary ; Breast Neoplasms - metabolism ; Caveolins - metabolism ; Cell Line, Tumor ; Down-Regulation ; Endosomes - metabolism ; Endothelium - metabolism ; Extracellular Vesicles - metabolism ; Extracellular Vesicles - ultrastructure ; Female ; Humans ; Mice, Nude ; Protein Transport ; rab GTP-Binding Proteins - metabolism ; SNARE Proteins - metabolism ; Transcytosis</subject><ispartof>ACS nano, 2019-12, Vol.13 (12), p.13853-13865</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-724128146dcd70dc338f72ddac460c5496002d7b2b7779b7c10add8184024f03</citedby><cites>FETCH-LOGICAL-a429t-724128146dcd70dc338f72ddac460c5496002d7b2b7779b7c10add8184024f03</cites><orcidid>0000-0002-4319-6520 ; 0000-0001-7358-2548 ; 0000-0003-3108-0704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b04397$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b04397$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31479239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morad, Golnaz</creatorcontrib><creatorcontrib>Carman, Christopher V</creatorcontrib><creatorcontrib>Hagedorn, Elliott J</creatorcontrib><creatorcontrib>Perlin, Julie R</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Mustafaoglu, Nur</creatorcontrib><creatorcontrib>Park, Tae-Eun</creatorcontrib><creatorcontrib>Ingber, Donald E</creatorcontrib><creatorcontrib>Daisy, Cassandra C</creatorcontrib><creatorcontrib>Moses, Marsha A</creatorcontrib><title>Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies.</description><subject>Animals</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain Neoplasms - secondary</subject><subject>Breast Neoplasms - metabolism</subject><subject>Caveolins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Down-Regulation</subject><subject>Endosomes - metabolism</subject><subject>Endothelium - metabolism</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Extracellular Vesicles - ultrastructure</subject><subject>Female</subject><subject>Humans</subject><subject>Mice, Nude</subject><subject>Protein Transport</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>SNARE Proteins - metabolism</subject><subject>Transcytosis</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKxDAUhoMo3tfuJEtBqkmaNs1GcLyD4GYQNxJOk4wT6SSatIPufAff0Cexw4yDLlydA-c7_7n8CO1RckQJo8egkwcfjmRNeC7FCtqkMi8zUpUPq8u8oBtoK6VnQgpRiXIdbeSUC8lyuYkeh90kxOzcRje1Bl-8tRG0bZqugYjvbXK6sQkPogU9xu3Y4hvfgm7xoAnBfH18DiI4jwcQo7MRTx3gYQSf9Hsbkks7aG0ETbK7i7iNhpcXw7Pr7Pbu6ubs9DYDzmSbCcYpqygvjTaCGJ3n1UgwY0DzkuiCy5IQZkTNaiGErIWmBIypaMUJ4yOSb6OTuexLV0-s0db3VzTqJboJxHcVwKm_Fe_G6ilMlaCllFz2AgcLgRheO5taNXFp9gbwNnRJMVbxouCUzNDjOapjSCna0XIMJWrmiVp4ohae9B37v7db8j8m9MDhHOg71XPoou9_9a_cN7uXmmY</recordid><startdate>20191224</startdate><enddate>20191224</enddate><creator>Morad, Golnaz</creator><creator>Carman, Christopher V</creator><creator>Hagedorn, Elliott J</creator><creator>Perlin, Julie R</creator><creator>Zon, Leonard I</creator><creator>Mustafaoglu, Nur</creator><creator>Park, Tae-Eun</creator><creator>Ingber, Donald E</creator><creator>Daisy, Cassandra C</creator><creator>Moses, Marsha A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4319-6520</orcidid><orcidid>https://orcid.org/0000-0001-7358-2548</orcidid><orcidid>https://orcid.org/0000-0003-3108-0704</orcidid></search><sort><creationdate>20191224</creationdate><title>Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis</title><author>Morad, Golnaz ; Carman, Christopher V ; Hagedorn, Elliott J ; Perlin, Julie R ; Zon, Leonard I ; Mustafaoglu, Nur ; Park, Tae-Eun ; Ingber, Donald E ; Daisy, Cassandra C ; Moses, Marsha A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-724128146dcd70dc338f72ddac460c5496002d7b2b7779b7c10add8184024f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain Neoplasms - secondary</topic><topic>Breast Neoplasms - metabolism</topic><topic>Caveolins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Down-Regulation</topic><topic>Endosomes - metabolism</topic><topic>Endothelium - metabolism</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Extracellular Vesicles - ultrastructure</topic><topic>Female</topic><topic>Humans</topic><topic>Mice, Nude</topic><topic>Protein Transport</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>SNARE Proteins - metabolism</topic><topic>Transcytosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morad, Golnaz</creatorcontrib><creatorcontrib>Carman, Christopher V</creatorcontrib><creatorcontrib>Hagedorn, Elliott J</creatorcontrib><creatorcontrib>Perlin, Julie R</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Mustafaoglu, Nur</creatorcontrib><creatorcontrib>Park, Tae-Eun</creatorcontrib><creatorcontrib>Ingber, Donald E</creatorcontrib><creatorcontrib>Daisy, Cassandra C</creatorcontrib><creatorcontrib>Moses, Marsha A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morad, Golnaz</au><au>Carman, Christopher V</au><au>Hagedorn, Elliott J</au><au>Perlin, Julie R</au><au>Zon, Leonard I</au><au>Mustafaoglu, Nur</au><au>Park, Tae-Eun</au><au>Ingber, Donald E</au><au>Daisy, Cassandra C</au><au>Moses, Marsha A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-12-24</date><risdate>2019</risdate><volume>13</volume><issue>12</issue><spage>13853</spage><epage>13865</epage><pages>13853-13865</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31479239</pmid><doi>10.1021/acsnano.9b04397</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4319-6520</orcidid><orcidid>https://orcid.org/0000-0001-7358-2548</orcidid><orcidid>https://orcid.org/0000-0003-3108-0704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-12, Vol.13 (12), p.13853-13865
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7169949
source MEDLINE; ACS Publications
subjects Animals
Blood-Brain Barrier - metabolism
Brain Neoplasms - secondary
Breast Neoplasms - metabolism
Caveolins - metabolism
Cell Line, Tumor
Down-Regulation
Endosomes - metabolism
Endothelium - metabolism
Extracellular Vesicles - metabolism
Extracellular Vesicles - ultrastructure
Female
Humans
Mice, Nude
Protein Transport
rab GTP-Binding Proteins - metabolism
SNARE Proteins - metabolism
Transcytosis
title Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor-Derived%20Extracellular%20Vesicles%20Breach%20the%20Intact%20Blood%E2%80%93Brain%20Barrier%20via%20Transcytosis&rft.jtitle=ACS%20nano&rft.au=Morad,%20Golnaz&rft.date=2019-12-24&rft.volume=13&rft.issue=12&rft.spage=13853&rft.epage=13865&rft.pages=13853-13865&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b04397&rft_dat=%3Cproquest_pubme%3E2284554109%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284554109&rft_id=info:pmid/31479239&rfr_iscdi=true