Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis
The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic...
Gespeichert in:
Veröffentlicht in: | ACS nano 2019-12, Vol.13 (12), p.13853-13865 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13865 |
---|---|
container_issue | 12 |
container_start_page | 13853 |
container_title | ACS nano |
container_volume | 13 |
creator | Morad, Golnaz Carman, Christopher V Hagedorn, Elliott J Perlin, Julie R Zon, Leonard I Mustafaoglu, Nur Park, Tae-Eun Ingber, Donald E Daisy, Cassandra C Moses, Marsha A |
description | The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies. |
doi_str_mv | 10.1021/acsnano.9b04397 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7169949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284554109</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-724128146dcd70dc338f72ddac460c5496002d7b2b7779b7c10add8184024f03</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMo3tfuJEtBqkmaNs1GcLyD4GYQNxJOk4wT6SSatIPufAff0Cexw4yDLlydA-c7_7n8CO1RckQJo8egkwcfjmRNeC7FCtqkMi8zUpUPq8u8oBtoK6VnQgpRiXIdbeSUC8lyuYkeh90kxOzcRje1Bl-8tRG0bZqugYjvbXK6sQkPogU9xu3Y4hvfgm7xoAnBfH18DiI4jwcQo7MRTx3gYQSf9Hsbkks7aG0ETbK7i7iNhpcXw7Pr7Pbu6ubs9DYDzmSbCcYpqygvjTaCGJ3n1UgwY0DzkuiCy5IQZkTNaiGErIWmBIypaMUJ4yOSb6OTuexLV0-s0db3VzTqJboJxHcVwKm_Fe_G6ilMlaCllFz2AgcLgRheO5taNXFp9gbwNnRJMVbxouCUzNDjOapjSCna0XIMJWrmiVp4ohae9B37v7db8j8m9MDhHOg71XPoou9_9a_cN7uXmmY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284554109</pqid></control><display><type>article</type><title>Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Morad, Golnaz ; Carman, Christopher V ; Hagedorn, Elliott J ; Perlin, Julie R ; Zon, Leonard I ; Mustafaoglu, Nur ; Park, Tae-Eun ; Ingber, Donald E ; Daisy, Cassandra C ; Moses, Marsha A</creator><creatorcontrib>Morad, Golnaz ; Carman, Christopher V ; Hagedorn, Elliott J ; Perlin, Julie R ; Zon, Leonard I ; Mustafaoglu, Nur ; Park, Tae-Eun ; Ingber, Donald E ; Daisy, Cassandra C ; Moses, Marsha A</creatorcontrib><description>The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b04397</identifier><identifier>PMID: 31479239</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Blood-Brain Barrier - metabolism ; Brain Neoplasms - secondary ; Breast Neoplasms - metabolism ; Caveolins - metabolism ; Cell Line, Tumor ; Down-Regulation ; Endosomes - metabolism ; Endothelium - metabolism ; Extracellular Vesicles - metabolism ; Extracellular Vesicles - ultrastructure ; Female ; Humans ; Mice, Nude ; Protein Transport ; rab GTP-Binding Proteins - metabolism ; SNARE Proteins - metabolism ; Transcytosis</subject><ispartof>ACS nano, 2019-12, Vol.13 (12), p.13853-13865</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-724128146dcd70dc338f72ddac460c5496002d7b2b7779b7c10add8184024f03</citedby><cites>FETCH-LOGICAL-a429t-724128146dcd70dc338f72ddac460c5496002d7b2b7779b7c10add8184024f03</cites><orcidid>0000-0002-4319-6520 ; 0000-0001-7358-2548 ; 0000-0003-3108-0704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b04397$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b04397$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31479239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morad, Golnaz</creatorcontrib><creatorcontrib>Carman, Christopher V</creatorcontrib><creatorcontrib>Hagedorn, Elliott J</creatorcontrib><creatorcontrib>Perlin, Julie R</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Mustafaoglu, Nur</creatorcontrib><creatorcontrib>Park, Tae-Eun</creatorcontrib><creatorcontrib>Ingber, Donald E</creatorcontrib><creatorcontrib>Daisy, Cassandra C</creatorcontrib><creatorcontrib>Moses, Marsha A</creatorcontrib><title>Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies.</description><subject>Animals</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain Neoplasms - secondary</subject><subject>Breast Neoplasms - metabolism</subject><subject>Caveolins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Down-Regulation</subject><subject>Endosomes - metabolism</subject><subject>Endothelium - metabolism</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Extracellular Vesicles - ultrastructure</subject><subject>Female</subject><subject>Humans</subject><subject>Mice, Nude</subject><subject>Protein Transport</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>SNARE Proteins - metabolism</subject><subject>Transcytosis</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKxDAUhoMo3tfuJEtBqkmaNs1GcLyD4GYQNxJOk4wT6SSatIPufAff0Cexw4yDLlydA-c7_7n8CO1RckQJo8egkwcfjmRNeC7FCtqkMi8zUpUPq8u8oBtoK6VnQgpRiXIdbeSUC8lyuYkeh90kxOzcRje1Bl-8tRG0bZqugYjvbXK6sQkPogU9xu3Y4hvfgm7xoAnBfH18DiI4jwcQo7MRTx3gYQSf9Hsbkks7aG0ETbK7i7iNhpcXw7Pr7Pbu6ubs9DYDzmSbCcYpqygvjTaCGJ3n1UgwY0DzkuiCy5IQZkTNaiGErIWmBIypaMUJ4yOSb6OTuexLV0-s0db3VzTqJboJxHcVwKm_Fe_G6ilMlaCllFz2AgcLgRheO5taNXFp9gbwNnRJMVbxouCUzNDjOapjSCna0XIMJWrmiVp4ohae9B37v7db8j8m9MDhHOg71XPoou9_9a_cN7uXmmY</recordid><startdate>20191224</startdate><enddate>20191224</enddate><creator>Morad, Golnaz</creator><creator>Carman, Christopher V</creator><creator>Hagedorn, Elliott J</creator><creator>Perlin, Julie R</creator><creator>Zon, Leonard I</creator><creator>Mustafaoglu, Nur</creator><creator>Park, Tae-Eun</creator><creator>Ingber, Donald E</creator><creator>Daisy, Cassandra C</creator><creator>Moses, Marsha A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4319-6520</orcidid><orcidid>https://orcid.org/0000-0001-7358-2548</orcidid><orcidid>https://orcid.org/0000-0003-3108-0704</orcidid></search><sort><creationdate>20191224</creationdate><title>Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis</title><author>Morad, Golnaz ; Carman, Christopher V ; Hagedorn, Elliott J ; Perlin, Julie R ; Zon, Leonard I ; Mustafaoglu, Nur ; Park, Tae-Eun ; Ingber, Donald E ; Daisy, Cassandra C ; Moses, Marsha A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-724128146dcd70dc338f72ddac460c5496002d7b2b7779b7c10add8184024f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain Neoplasms - secondary</topic><topic>Breast Neoplasms - metabolism</topic><topic>Caveolins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Down-Regulation</topic><topic>Endosomes - metabolism</topic><topic>Endothelium - metabolism</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Extracellular Vesicles - ultrastructure</topic><topic>Female</topic><topic>Humans</topic><topic>Mice, Nude</topic><topic>Protein Transport</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>SNARE Proteins - metabolism</topic><topic>Transcytosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morad, Golnaz</creatorcontrib><creatorcontrib>Carman, Christopher V</creatorcontrib><creatorcontrib>Hagedorn, Elliott J</creatorcontrib><creatorcontrib>Perlin, Julie R</creatorcontrib><creatorcontrib>Zon, Leonard I</creatorcontrib><creatorcontrib>Mustafaoglu, Nur</creatorcontrib><creatorcontrib>Park, Tae-Eun</creatorcontrib><creatorcontrib>Ingber, Donald E</creatorcontrib><creatorcontrib>Daisy, Cassandra C</creatorcontrib><creatorcontrib>Moses, Marsha A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morad, Golnaz</au><au>Carman, Christopher V</au><au>Hagedorn, Elliott J</au><au>Perlin, Julie R</au><au>Zon, Leonard I</au><au>Mustafaoglu, Nur</au><au>Park, Tae-Eun</au><au>Ingber, Donald E</au><au>Daisy, Cassandra C</au><au>Moses, Marsha A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-12-24</date><risdate>2019</risdate><volume>13</volume><issue>12</issue><spage>13853</spage><epage>13865</epage><pages>13853-13865</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The restrictive nature of the blood–brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31479239</pmid><doi>10.1021/acsnano.9b04397</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4319-6520</orcidid><orcidid>https://orcid.org/0000-0001-7358-2548</orcidid><orcidid>https://orcid.org/0000-0003-3108-0704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2019-12, Vol.13 (12), p.13853-13865 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7169949 |
source | MEDLINE; ACS Publications |
subjects | Animals Blood-Brain Barrier - metabolism Brain Neoplasms - secondary Breast Neoplasms - metabolism Caveolins - metabolism Cell Line, Tumor Down-Regulation Endosomes - metabolism Endothelium - metabolism Extracellular Vesicles - metabolism Extracellular Vesicles - ultrastructure Female Humans Mice, Nude Protein Transport rab GTP-Binding Proteins - metabolism SNARE Proteins - metabolism Transcytosis |
title | Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor-Derived%20Extracellular%20Vesicles%20Breach%20the%20Intact%20Blood%E2%80%93Brain%20Barrier%20via%20Transcytosis&rft.jtitle=ACS%20nano&rft.au=Morad,%20Golnaz&rft.date=2019-12-24&rft.volume=13&rft.issue=12&rft.spage=13853&rft.epage=13865&rft.pages=13853-13865&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b04397&rft_dat=%3Cproquest_pubme%3E2284554109%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284554109&rft_id=info:pmid/31479239&rfr_iscdi=true |