Python BMDS: A Python interface library and web application for the canonical EPA dose-response modeling software
•Python BMDS and web application enable automation of models available from BMDS.•Large public datasets can now be efficiently modeled for predictive toxicology.•Python BMDS users can customize BMDS version and model recommendation logic.•Python BMDS and previously published BMD values were highly c...
Gespeichert in:
Veröffentlicht in: | Reproductive toxicology (Elmsford, N.Y.) N.Y.), 2019-12, Vol.90, p.102-108 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | |
container_start_page | 102 |
container_title | Reproductive toxicology (Elmsford, N.Y.) |
container_volume | 90 |
creator | Pham, Ly Ly Watford, Sean Friedman, Katie Paul Wignall, Jessica Shapiro, Andrew J. |
description | •Python BMDS and web application enable automation of models available from BMDS.•Large public datasets can now be efficiently modeled for predictive toxicology.•Python BMDS users can customize BMDS version and model recommendation logic.•Python BMDS and previously published BMD values were highly concordant.•Python BMDS was used to model nearly 28,000 datasets in ToxRefDB version 2.0.
Several primary sources of publicly available, quantitative dose-response data from traditional toxicology study designs relevant to predictive toxicology applications are now available, including the redeveloped U.S. Environmental Protection Agency’s Toxicity Reference Database (ToxRefDB v2.0), the Health Assessment Workspace Collaborative (HAWC), and the National Toxicology Program’s Chemical Program’s Chemical Effects in Biological Systems (CEBS). These resources provide effect level information but modeling these data to a curve may be more informative for predictive toxicology applications. Benchmark Dose Software (BMDS) has been recognized broadly and used for regulatory applications at multiple agencies. However, the current BMDS software was not amenable to modeling large datasets. Herein we describe development and use of a Python package that implements a wrapper around BMDS, a software that requires manual input in the dose-response modeling process (i.e., best-fitting model-selection, reporting, and dose-dropping). In the Python BMDS, users can select the BMDS version, customize model recommendation logic, and export summaries of the resultant BMDS output. Further, using the Python interface, a web-based application programming interface (API) has been developed for easy integration into other software systems, pipelines, or databases. Software utility was demonstrated via modeling nearly 28,000 datasets in ToxRefDB v2.0, re-creation of an existing, published large-scale analysis, and demonstration of usage in software such as CEBS and HAWC. Python BMDS enables rapid-batch processing of dose-response datasets using a modeling software with broad acceptance in the toxicology community, thereby providing an important tool for leveraging the publicly available quantitative toxicology data in a reproducible manner. |
doi_str_mv | 10.1016/j.reprotox.2019.07.013 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7169420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890623819300875</els_id><sourcerecordid>S0890623819300875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-5c1639b55c0cdafff1fbe96b908b8a5315424d1a8d99bfdd20c7908471f546043</originalsourceid><addsrcrecordid>eNqFUd1OFTEQboxGDugrkL7ArtP9a-uF8YigJhhJhOum2045PdnTru0C8vaWHCB65dVkZr6fzHyEHDOoGbDh3bZOOKe4xN91A0zWwGtg7QuyYoK3FeMgXpIVCAnV0LTigBzmvAWAjkv-mhy0rGO9ALEivy7ul00M9NP3zz_f0zV9bH1YMDltkE5-TDrdUx0svcOR6nmevNGLLygXE102SI0OMZThRE8v1tTGjFXCPMeQke6ixcmHa5qjW-50wjfkldNTxreP9YhcnZ1ennytzn98-XayPq9Mx9lS9YYNrRz73oCx2jnH3IhyGCWIUei-ZX3XdJZpYaUcnbUNGF52hev6boCuPSIf9rrzzbhDazAsSU9qTn5X7lFRe_XvJviNuo63irNBdg0UgWEvYFLMOaF75jJQDyGorXoKQT2EoICrEkIhHv_t_Ex7-noBfNwDsNx_6zGpbDwGg9YnNIuy0f_P4w-UCZ9P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Python BMDS: A Python interface library and web application for the canonical EPA dose-response modeling software</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pham, Ly Ly ; Watford, Sean ; Friedman, Katie Paul ; Wignall, Jessica ; Shapiro, Andrew J.</creator><creatorcontrib>Pham, Ly Ly ; Watford, Sean ; Friedman, Katie Paul ; Wignall, Jessica ; Shapiro, Andrew J.</creatorcontrib><description>•Python BMDS and web application enable automation of models available from BMDS.•Large public datasets can now be efficiently modeled for predictive toxicology.•Python BMDS users can customize BMDS version and model recommendation logic.•Python BMDS and previously published BMD values were highly concordant.•Python BMDS was used to model nearly 28,000 datasets in ToxRefDB version 2.0.
Several primary sources of publicly available, quantitative dose-response data from traditional toxicology study designs relevant to predictive toxicology applications are now available, including the redeveloped U.S. Environmental Protection Agency’s Toxicity Reference Database (ToxRefDB v2.0), the Health Assessment Workspace Collaborative (HAWC), and the National Toxicology Program’s Chemical Program’s Chemical Effects in Biological Systems (CEBS). These resources provide effect level information but modeling these data to a curve may be more informative for predictive toxicology applications. Benchmark Dose Software (BMDS) has been recognized broadly and used for regulatory applications at multiple agencies. However, the current BMDS software was not amenable to modeling large datasets. Herein we describe development and use of a Python package that implements a wrapper around BMDS, a software that requires manual input in the dose-response modeling process (i.e., best-fitting model-selection, reporting, and dose-dropping). In the Python BMDS, users can select the BMDS version, customize model recommendation logic, and export summaries of the resultant BMDS output. Further, using the Python interface, a web-based application programming interface (API) has been developed for easy integration into other software systems, pipelines, or databases. Software utility was demonstrated via modeling nearly 28,000 datasets in ToxRefDB v2.0, re-creation of an existing, published large-scale analysis, and demonstration of usage in software such as CEBS and HAWC. Python BMDS enables rapid-batch processing of dose-response datasets using a modeling software with broad acceptance in the toxicology community, thereby providing an important tool for leveraging the publicly available quantitative toxicology data in a reproducible manner.</description><identifier>ISSN: 0890-6238</identifier><identifier>EISSN: 1873-1708</identifier><identifier>DOI: 10.1016/j.reprotox.2019.07.013</identifier><identifier>PMID: 31415808</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Benchmark dose modeling ; Dose-Response ; Dose-Response Relationship, Drug ; Humans ; In vivo toxicology ; Internet ; Libraries, Digital ; Models, Biological ; Risk Assessment ; Software ; Systematic review ; United States ; United States Environmental Protection Agency</subject><ispartof>Reproductive toxicology (Elmsford, N.Y.), 2019-12, Vol.90, p.102-108</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-5c1639b55c0cdafff1fbe96b908b8a5315424d1a8d99bfdd20c7908471f546043</citedby><cites>FETCH-LOGICAL-c471t-5c1639b55c0cdafff1fbe96b908b8a5315424d1a8d99bfdd20c7908471f546043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890623819300875$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31415808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, Ly Ly</creatorcontrib><creatorcontrib>Watford, Sean</creatorcontrib><creatorcontrib>Friedman, Katie Paul</creatorcontrib><creatorcontrib>Wignall, Jessica</creatorcontrib><creatorcontrib>Shapiro, Andrew J.</creatorcontrib><title>Python BMDS: A Python interface library and web application for the canonical EPA dose-response modeling software</title><title>Reproductive toxicology (Elmsford, N.Y.)</title><addtitle>Reprod Toxicol</addtitle><description>•Python BMDS and web application enable automation of models available from BMDS.•Large public datasets can now be efficiently modeled for predictive toxicology.•Python BMDS users can customize BMDS version and model recommendation logic.•Python BMDS and previously published BMD values were highly concordant.•Python BMDS was used to model nearly 28,000 datasets in ToxRefDB version 2.0.
Several primary sources of publicly available, quantitative dose-response data from traditional toxicology study designs relevant to predictive toxicology applications are now available, including the redeveloped U.S. Environmental Protection Agency’s Toxicity Reference Database (ToxRefDB v2.0), the Health Assessment Workspace Collaborative (HAWC), and the National Toxicology Program’s Chemical Program’s Chemical Effects in Biological Systems (CEBS). These resources provide effect level information but modeling these data to a curve may be more informative for predictive toxicology applications. Benchmark Dose Software (BMDS) has been recognized broadly and used for regulatory applications at multiple agencies. However, the current BMDS software was not amenable to modeling large datasets. Herein we describe development and use of a Python package that implements a wrapper around BMDS, a software that requires manual input in the dose-response modeling process (i.e., best-fitting model-selection, reporting, and dose-dropping). In the Python BMDS, users can select the BMDS version, customize model recommendation logic, and export summaries of the resultant BMDS output. Further, using the Python interface, a web-based application programming interface (API) has been developed for easy integration into other software systems, pipelines, or databases. Software utility was demonstrated via modeling nearly 28,000 datasets in ToxRefDB v2.0, re-creation of an existing, published large-scale analysis, and demonstration of usage in software such as CEBS and HAWC. Python BMDS enables rapid-batch processing of dose-response datasets using a modeling software with broad acceptance in the toxicology community, thereby providing an important tool for leveraging the publicly available quantitative toxicology data in a reproducible manner.</description><subject>Benchmark dose modeling</subject><subject>Dose-Response</subject><subject>Dose-Response Relationship, Drug</subject><subject>Humans</subject><subject>In vivo toxicology</subject><subject>Internet</subject><subject>Libraries, Digital</subject><subject>Models, Biological</subject><subject>Risk Assessment</subject><subject>Software</subject><subject>Systematic review</subject><subject>United States</subject><subject>United States Environmental Protection Agency</subject><issn>0890-6238</issn><issn>1873-1708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUd1OFTEQboxGDugrkL7ArtP9a-uF8YigJhhJhOum2045PdnTru0C8vaWHCB65dVkZr6fzHyEHDOoGbDh3bZOOKe4xN91A0zWwGtg7QuyYoK3FeMgXpIVCAnV0LTigBzmvAWAjkv-mhy0rGO9ALEivy7ul00M9NP3zz_f0zV9bH1YMDltkE5-TDrdUx0svcOR6nmevNGLLygXE102SI0OMZThRE8v1tTGjFXCPMeQke6ixcmHa5qjW-50wjfkldNTxreP9YhcnZ1ennytzn98-XayPq9Mx9lS9YYNrRz73oCx2jnH3IhyGCWIUei-ZX3XdJZpYaUcnbUNGF52hev6boCuPSIf9rrzzbhDazAsSU9qTn5X7lFRe_XvJviNuo63irNBdg0UgWEvYFLMOaF75jJQDyGorXoKQT2EoICrEkIhHv_t_Ex7-noBfNwDsNx_6zGpbDwGg9YnNIuy0f_P4w-UCZ9P</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Pham, Ly Ly</creator><creator>Watford, Sean</creator><creator>Friedman, Katie Paul</creator><creator>Wignall, Jessica</creator><creator>Shapiro, Andrew J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20191201</creationdate><title>Python BMDS: A Python interface library and web application for the canonical EPA dose-response modeling software</title><author>Pham, Ly Ly ; Watford, Sean ; Friedman, Katie Paul ; Wignall, Jessica ; Shapiro, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-5c1639b55c0cdafff1fbe96b908b8a5315424d1a8d99bfdd20c7908471f546043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benchmark dose modeling</topic><topic>Dose-Response</topic><topic>Dose-Response Relationship, Drug</topic><topic>Humans</topic><topic>In vivo toxicology</topic><topic>Internet</topic><topic>Libraries, Digital</topic><topic>Models, Biological</topic><topic>Risk Assessment</topic><topic>Software</topic><topic>Systematic review</topic><topic>United States</topic><topic>United States Environmental Protection Agency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Ly Ly</creatorcontrib><creatorcontrib>Watford, Sean</creatorcontrib><creatorcontrib>Friedman, Katie Paul</creatorcontrib><creatorcontrib>Wignall, Jessica</creatorcontrib><creatorcontrib>Shapiro, Andrew J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Reproductive toxicology (Elmsford, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Ly Ly</au><au>Watford, Sean</au><au>Friedman, Katie Paul</au><au>Wignall, Jessica</au><au>Shapiro, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Python BMDS: A Python interface library and web application for the canonical EPA dose-response modeling software</atitle><jtitle>Reproductive toxicology (Elmsford, N.Y.)</jtitle><addtitle>Reprod Toxicol</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>90</volume><spage>102</spage><epage>108</epage><pages>102-108</pages><issn>0890-6238</issn><eissn>1873-1708</eissn><abstract>•Python BMDS and web application enable automation of models available from BMDS.•Large public datasets can now be efficiently modeled for predictive toxicology.•Python BMDS users can customize BMDS version and model recommendation logic.•Python BMDS and previously published BMD values were highly concordant.•Python BMDS was used to model nearly 28,000 datasets in ToxRefDB version 2.0.
Several primary sources of publicly available, quantitative dose-response data from traditional toxicology study designs relevant to predictive toxicology applications are now available, including the redeveloped U.S. Environmental Protection Agency’s Toxicity Reference Database (ToxRefDB v2.0), the Health Assessment Workspace Collaborative (HAWC), and the National Toxicology Program’s Chemical Program’s Chemical Effects in Biological Systems (CEBS). These resources provide effect level information but modeling these data to a curve may be more informative for predictive toxicology applications. Benchmark Dose Software (BMDS) has been recognized broadly and used for regulatory applications at multiple agencies. However, the current BMDS software was not amenable to modeling large datasets. Herein we describe development and use of a Python package that implements a wrapper around BMDS, a software that requires manual input in the dose-response modeling process (i.e., best-fitting model-selection, reporting, and dose-dropping). In the Python BMDS, users can select the BMDS version, customize model recommendation logic, and export summaries of the resultant BMDS output. Further, using the Python interface, a web-based application programming interface (API) has been developed for easy integration into other software systems, pipelines, or databases. Software utility was demonstrated via modeling nearly 28,000 datasets in ToxRefDB v2.0, re-creation of an existing, published large-scale analysis, and demonstration of usage in software such as CEBS and HAWC. Python BMDS enables rapid-batch processing of dose-response datasets using a modeling software with broad acceptance in the toxicology community, thereby providing an important tool for leveraging the publicly available quantitative toxicology data in a reproducible manner.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31415808</pmid><doi>10.1016/j.reprotox.2019.07.013</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6238 |
ispartof | Reproductive toxicology (Elmsford, N.Y.), 2019-12, Vol.90, p.102-108 |
issn | 0890-6238 1873-1708 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7169420 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Benchmark dose modeling Dose-Response Dose-Response Relationship, Drug Humans In vivo toxicology Internet Libraries, Digital Models, Biological Risk Assessment Software Systematic review United States United States Environmental Protection Agency |
title | Python BMDS: A Python interface library and web application for the canonical EPA dose-response modeling software |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Python%20BMDS:%20A%20Python%20interface%20library%20and%20web%20application%20for%20the%20canonical%20EPA%20dose-response%20modeling%20software&rft.jtitle=Reproductive%20toxicology%20(Elmsford,%20N.Y.)&rft.au=Pham,%20Ly%20Ly&rft.date=2019-12-01&rft.volume=90&rft.spage=102&rft.epage=108&rft.pages=102-108&rft.issn=0890-6238&rft.eissn=1873-1708&rft_id=info:doi/10.1016/j.reprotox.2019.07.013&rft_dat=%3Celsevier_pubme%3ES0890623819300875%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31415808&rft_els_id=S0890623819300875&rfr_iscdi=true |