Stepwise Promoter Melting by Bacterial RNA Polymerase

Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2020-04, Vol.78 (2), p.275-288.e6
Hauptverfasser: Chen, James, Chiu, Courtney, Gopalkrishnan, Saumya, Chen, Albert Y., Olinares, Paul Dominic B., Saecker, Ruth M., Winkelman, Jared T., Maloney, Michael F., Chait, Brian T., Ross, Wilma, Gourse, Richard L., Campbell, Elizabeth A., Darst, Seth A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288.e6
container_issue 2
container_start_page 275
container_title Molecular cell
container_volume 78
creator Chen, James
Chiu, Courtney
Gopalkrishnan, Saumya
Chen, Albert Y.
Olinares, Paul Dominic B.
Saecker, Ruth M.
Winkelman, Jared T.
Maloney, Michael F.
Chait, Brian T.
Ross, Wilma
Gourse, Richard L.
Campbell, Elizabeth A.
Darst, Seth A.
description Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown structure. We use single-particle cryoelectron microscopy to visualize seven intermediates containing Escherichia coli RNAP with the transcription factor TraR en route to forming RPo. The structures span the RPo formation pathway from initial recognition of the duplex promoter in a closed complex to the final RPo. The structures and supporting biochemical data define RNAP and promoter DNA conformational changes that delineate steps on the pathway, including previously undetected transient promoter-RNAP interactions that contribute to populating the intermediates but do not occur in RPo. Our work provides a structural basis for understanding RPo formation and its regulation, a major checkpoint in gene expression throughout evolution. [Display omitted] •Cryo-EM structures of 7 intermediates in promoter opening pathway from RPc to RPo•Intermediates populated by using an inhibitor and a promoter with unstable RPo•RNAP and DNA conformational changes in mobile regions mark the steps in the pathway•Transient interactions identified in intermediates are not found in RPc or RPo Cryo-EM structures of RNA polymerase-promoter DNA intermediates identify stages in transcription initiation from the initial recognition of double-stranded promoter DNA in RPc to final promoter melting in RPo. Structural analyses of RNA polymerase and DNA conformational changes delineate steps in the pathway. Biochemical and genetic characterization support their functional importance.
doi_str_mv 10.1016/j.molcel.2020.02.017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520301106</els_id><sourcerecordid>2376730176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-7c9a9e1f29d37a90d91cdc0c96fd52654001ce614fea28d1ae8a30dfa99611c73</originalsourceid><addsrcrecordid>eNqFUclOwzAQtRCI_Q8QypFLg8dx7PqCBIhNYhPL2TL2BFwlcbFTUP-eVC3bBU5jjd97M_MeITtAc6Ag9kd5E2qLdc4oozllOQW5RNaBKjngIPjy4s2kKNfIRkojSoGXQ7VK1goGgpbA10l53-H43SfMbmNoQocxu8K68-1z9jTNjoztO97U2d31YXYb6mmD0STcIiuVqRNuL-omeTw9eTg-H1zenF0cH14OLFeiG0irjEKomHKFNIo6BdZZapWoXMlEyfuNLArgFRo2dGBwaArqKqOUALCy2CQHc93x5KlBZ7Htoqn1OPrGxKkOxuvfP61_0c_hTUsQAtRMYG8hEMPrBFOnG59602rTYpgkzXihCgVsSP-HFlLIojdZ9FA-h9oYUopYfW0EVM_C0SM9D0fPwtGU6Z7X03Z_XvNF-kzj-1zsPX3zGHWyHluLzke0nXbB_z3hAxoXohM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376730176</pqid></control><display><type>article</type><title>Stepwise Promoter Melting by Bacterial RNA Polymerase</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, James ; Chiu, Courtney ; Gopalkrishnan, Saumya ; Chen, Albert Y. ; Olinares, Paul Dominic B. ; Saecker, Ruth M. ; Winkelman, Jared T. ; Maloney, Michael F. ; Chait, Brian T. ; Ross, Wilma ; Gourse, Richard L. ; Campbell, Elizabeth A. ; Darst, Seth A.</creator><creatorcontrib>Chen, James ; Chiu, Courtney ; Gopalkrishnan, Saumya ; Chen, Albert Y. ; Olinares, Paul Dominic B. ; Saecker, Ruth M. ; Winkelman, Jared T. ; Maloney, Michael F. ; Chait, Brian T. ; Ross, Wilma ; Gourse, Richard L. ; Campbell, Elizabeth A. ; Darst, Seth A.</creatorcontrib><description>Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown structure. We use single-particle cryoelectron microscopy to visualize seven intermediates containing Escherichia coli RNAP with the transcription factor TraR en route to forming RPo. The structures span the RPo formation pathway from initial recognition of the duplex promoter in a closed complex to the final RPo. The structures and supporting biochemical data define RNAP and promoter DNA conformational changes that delineate steps on the pathway, including previously undetected transient promoter-RNAP interactions that contribute to populating the intermediates but do not occur in RPo. Our work provides a structural basis for understanding RPo formation and its regulation, a major checkpoint in gene expression throughout evolution. [Display omitted] •Cryo-EM structures of 7 intermediates in promoter opening pathway from RPc to RPo•Intermediates populated by using an inhibitor and a promoter with unstable RPo•RNAP and DNA conformational changes in mobile regions mark the steps in the pathway•Transient interactions identified in intermediates are not found in RPc or RPo Cryo-EM structures of RNA polymerase-promoter DNA intermediates identify stages in transcription initiation from the initial recognition of double-stranded promoter DNA in RPc to final promoter melting in RPo. Structural analyses of RNA polymerase and DNA conformational changes delineate steps in the pathway. Biochemical and genetic characterization support their functional importance.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.02.017</identifier><identifier>PMID: 32160514</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>active sites ; Conformational change ; cryo-electron microscopy ; Cryoelectron Microscopy ; DNA ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - genetics ; Escherichia coli ; Escherichia coli - genetics ; evolution ; gene expression ; melting ; Nucleic Acid Conformation ; Open promoter complex formation ; Promoter DNA ; Promoter Regions, Genetic - genetics ; Protein Binding - genetics ; Protein Conformation ; RNA polymerase ; RNA, Bacterial - genetics ; transcription factors ; Transcription initiation ; Transcription Initiation, Genetic ; TraR</subject><ispartof>Molecular cell, 2020-04, Vol.78 (2), p.275-288.e6</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-7c9a9e1f29d37a90d91cdc0c96fd52654001ce614fea28d1ae8a30dfa99611c73</citedby><cites>FETCH-LOGICAL-c496t-7c9a9e1f29d37a90d91cdc0c96fd52654001ce614fea28d1ae8a30dfa99611c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.02.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32160514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, James</creatorcontrib><creatorcontrib>Chiu, Courtney</creatorcontrib><creatorcontrib>Gopalkrishnan, Saumya</creatorcontrib><creatorcontrib>Chen, Albert Y.</creatorcontrib><creatorcontrib>Olinares, Paul Dominic B.</creatorcontrib><creatorcontrib>Saecker, Ruth M.</creatorcontrib><creatorcontrib>Winkelman, Jared T.</creatorcontrib><creatorcontrib>Maloney, Michael F.</creatorcontrib><creatorcontrib>Chait, Brian T.</creatorcontrib><creatorcontrib>Ross, Wilma</creatorcontrib><creatorcontrib>Gourse, Richard L.</creatorcontrib><creatorcontrib>Campbell, Elizabeth A.</creatorcontrib><creatorcontrib>Darst, Seth A.</creatorcontrib><title>Stepwise Promoter Melting by Bacterial RNA Polymerase</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown structure. We use single-particle cryoelectron microscopy to visualize seven intermediates containing Escherichia coli RNAP with the transcription factor TraR en route to forming RPo. The structures span the RPo formation pathway from initial recognition of the duplex promoter in a closed complex to the final RPo. The structures and supporting biochemical data define RNAP and promoter DNA conformational changes that delineate steps on the pathway, including previously undetected transient promoter-RNAP interactions that contribute to populating the intermediates but do not occur in RPo. Our work provides a structural basis for understanding RPo formation and its regulation, a major checkpoint in gene expression throughout evolution. [Display omitted] •Cryo-EM structures of 7 intermediates in promoter opening pathway from RPc to RPo•Intermediates populated by using an inhibitor and a promoter with unstable RPo•RNAP and DNA conformational changes in mobile regions mark the steps in the pathway•Transient interactions identified in intermediates are not found in RPc or RPo Cryo-EM structures of RNA polymerase-promoter DNA intermediates identify stages in transcription initiation from the initial recognition of double-stranded promoter DNA in RPc to final promoter melting in RPo. Structural analyses of RNA polymerase and DNA conformational changes delineate steps in the pathway. Biochemical and genetic characterization support their functional importance.</description><subject>active sites</subject><subject>Conformational change</subject><subject>cryo-electron microscopy</subject><subject>Cryoelectron Microscopy</subject><subject>DNA</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>evolution</subject><subject>gene expression</subject><subject>melting</subject><subject>Nucleic Acid Conformation</subject><subject>Open promoter complex formation</subject><subject>Promoter DNA</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding - genetics</subject><subject>Protein Conformation</subject><subject>RNA polymerase</subject><subject>RNA, Bacterial - genetics</subject><subject>transcription factors</subject><subject>Transcription initiation</subject><subject>Transcription Initiation, Genetic</subject><subject>TraR</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUclOwzAQtRCI_Q8QypFLg8dx7PqCBIhNYhPL2TL2BFwlcbFTUP-eVC3bBU5jjd97M_MeITtAc6Ag9kd5E2qLdc4oozllOQW5RNaBKjngIPjy4s2kKNfIRkojSoGXQ7VK1goGgpbA10l53-H43SfMbmNoQocxu8K68-1z9jTNjoztO97U2d31YXYb6mmD0STcIiuVqRNuL-omeTw9eTg-H1zenF0cH14OLFeiG0irjEKomHKFNIo6BdZZapWoXMlEyfuNLArgFRo2dGBwaArqKqOUALCy2CQHc93x5KlBZ7Htoqn1OPrGxKkOxuvfP61_0c_hTUsQAtRMYG8hEMPrBFOnG59602rTYpgkzXihCgVsSP-HFlLIojdZ9FA-h9oYUopYfW0EVM_C0SM9D0fPwtGU6Z7X03Z_XvNF-kzj-1zsPX3zGHWyHluLzke0nXbB_z3hAxoXohM</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Chen, James</creator><creator>Chiu, Courtney</creator><creator>Gopalkrishnan, Saumya</creator><creator>Chen, Albert Y.</creator><creator>Olinares, Paul Dominic B.</creator><creator>Saecker, Ruth M.</creator><creator>Winkelman, Jared T.</creator><creator>Maloney, Michael F.</creator><creator>Chait, Brian T.</creator><creator>Ross, Wilma</creator><creator>Gourse, Richard L.</creator><creator>Campbell, Elizabeth A.</creator><creator>Darst, Seth A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20200416</creationdate><title>Stepwise Promoter Melting by Bacterial RNA Polymerase</title><author>Chen, James ; Chiu, Courtney ; Gopalkrishnan, Saumya ; Chen, Albert Y. ; Olinares, Paul Dominic B. ; Saecker, Ruth M. ; Winkelman, Jared T. ; Maloney, Michael F. ; Chait, Brian T. ; Ross, Wilma ; Gourse, Richard L. ; Campbell, Elizabeth A. ; Darst, Seth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-7c9a9e1f29d37a90d91cdc0c96fd52654001ce614fea28d1ae8a30dfa99611c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active sites</topic><topic>Conformational change</topic><topic>cryo-electron microscopy</topic><topic>Cryoelectron Microscopy</topic><topic>DNA</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>evolution</topic><topic>gene expression</topic><topic>melting</topic><topic>Nucleic Acid Conformation</topic><topic>Open promoter complex formation</topic><topic>Promoter DNA</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding - genetics</topic><topic>Protein Conformation</topic><topic>RNA polymerase</topic><topic>RNA, Bacterial - genetics</topic><topic>transcription factors</topic><topic>Transcription initiation</topic><topic>Transcription Initiation, Genetic</topic><topic>TraR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, James</creatorcontrib><creatorcontrib>Chiu, Courtney</creatorcontrib><creatorcontrib>Gopalkrishnan, Saumya</creatorcontrib><creatorcontrib>Chen, Albert Y.</creatorcontrib><creatorcontrib>Olinares, Paul Dominic B.</creatorcontrib><creatorcontrib>Saecker, Ruth M.</creatorcontrib><creatorcontrib>Winkelman, Jared T.</creatorcontrib><creatorcontrib>Maloney, Michael F.</creatorcontrib><creatorcontrib>Chait, Brian T.</creatorcontrib><creatorcontrib>Ross, Wilma</creatorcontrib><creatorcontrib>Gourse, Richard L.</creatorcontrib><creatorcontrib>Campbell, Elizabeth A.</creatorcontrib><creatorcontrib>Darst, Seth A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, James</au><au>Chiu, Courtney</au><au>Gopalkrishnan, Saumya</au><au>Chen, Albert Y.</au><au>Olinares, Paul Dominic B.</au><au>Saecker, Ruth M.</au><au>Winkelman, Jared T.</au><au>Maloney, Michael F.</au><au>Chait, Brian T.</au><au>Ross, Wilma</au><au>Gourse, Richard L.</au><au>Campbell, Elizabeth A.</au><au>Darst, Seth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stepwise Promoter Melting by Bacterial RNA Polymerase</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-04-16</date><risdate>2020</risdate><volume>78</volume><issue>2</issue><spage>275</spage><epage>288.e6</epage><pages>275-288.e6</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown structure. We use single-particle cryoelectron microscopy to visualize seven intermediates containing Escherichia coli RNAP with the transcription factor TraR en route to forming RPo. The structures span the RPo formation pathway from initial recognition of the duplex promoter in a closed complex to the final RPo. The structures and supporting biochemical data define RNAP and promoter DNA conformational changes that delineate steps on the pathway, including previously undetected transient promoter-RNAP interactions that contribute to populating the intermediates but do not occur in RPo. Our work provides a structural basis for understanding RPo formation and its regulation, a major checkpoint in gene expression throughout evolution. [Display omitted] •Cryo-EM structures of 7 intermediates in promoter opening pathway from RPc to RPo•Intermediates populated by using an inhibitor and a promoter with unstable RPo•RNAP and DNA conformational changes in mobile regions mark the steps in the pathway•Transient interactions identified in intermediates are not found in RPc or RPo Cryo-EM structures of RNA polymerase-promoter DNA intermediates identify stages in transcription initiation from the initial recognition of double-stranded promoter DNA in RPc to final promoter melting in RPo. Structural analyses of RNA polymerase and DNA conformational changes delineate steps in the pathway. Biochemical and genetic characterization support their functional importance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32160514</pmid><doi>10.1016/j.molcel.2020.02.017</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2020-04, Vol.78 (2), p.275-288.e6
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166197
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects active sites
Conformational change
cryo-electron microscopy
Cryoelectron Microscopy
DNA
DNA-directed RNA polymerase
DNA-Directed RNA Polymerases - chemistry
DNA-Directed RNA Polymerases - genetics
Escherichia coli
Escherichia coli - genetics
evolution
gene expression
melting
Nucleic Acid Conformation
Open promoter complex formation
Promoter DNA
Promoter Regions, Genetic - genetics
Protein Binding - genetics
Protein Conformation
RNA polymerase
RNA, Bacterial - genetics
transcription factors
Transcription initiation
Transcription Initiation, Genetic
TraR
title Stepwise Promoter Melting by Bacterial RNA Polymerase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stepwise%20Promoter%20Melting%20by%20Bacterial%20RNA%20Polymerase&rft.jtitle=Molecular%20cell&rft.au=Chen,%20James&rft.date=2020-04-16&rft.volume=78&rft.issue=2&rft.spage=275&rft.epage=288.e6&rft.pages=275-288.e6&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.02.017&rft_dat=%3Cproquest_pubme%3E2376730176%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376730176&rft_id=info:pmid/32160514&rft_els_id=S1097276520301106&rfr_iscdi=true