Stepwise Promoter Melting by Bacterial RNA Polymerase
Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown st...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2020-04, Vol.78 (2), p.275-288.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288.e6 |
---|---|
container_issue | 2 |
container_start_page | 275 |
container_title | Molecular cell |
container_volume | 78 |
creator | Chen, James Chiu, Courtney Gopalkrishnan, Saumya Chen, Albert Y. Olinares, Paul Dominic B. Saecker, Ruth M. Winkelman, Jared T. Maloney, Michael F. Chait, Brian T. Ross, Wilma Gourse, Richard L. Campbell, Elizabeth A. Darst, Seth A. |
description | Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown structure. We use single-particle cryoelectron microscopy to visualize seven intermediates containing Escherichia coli RNAP with the transcription factor TraR en route to forming RPo. The structures span the RPo formation pathway from initial recognition of the duplex promoter in a closed complex to the final RPo. The structures and supporting biochemical data define RNAP and promoter DNA conformational changes that delineate steps on the pathway, including previously undetected transient promoter-RNAP interactions that contribute to populating the intermediates but do not occur in RPo. Our work provides a structural basis for understanding RPo formation and its regulation, a major checkpoint in gene expression throughout evolution.
[Display omitted]
•Cryo-EM structures of 7 intermediates in promoter opening pathway from RPc to RPo•Intermediates populated by using an inhibitor and a promoter with unstable RPo•RNAP and DNA conformational changes in mobile regions mark the steps in the pathway•Transient interactions identified in intermediates are not found in RPc or RPo
Cryo-EM structures of RNA polymerase-promoter DNA intermediates identify stages in transcription initiation from the initial recognition of double-stranded promoter DNA in RPc to final promoter melting in RPo. Structural analyses of RNA polymerase and DNA conformational changes delineate steps in the pathway. Biochemical and genetic characterization support their functional importance. |
doi_str_mv | 10.1016/j.molcel.2020.02.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520301106</els_id><sourcerecordid>2376730176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-7c9a9e1f29d37a90d91cdc0c96fd52654001ce614fea28d1ae8a30dfa99611c73</originalsourceid><addsrcrecordid>eNqFUclOwzAQtRCI_Q8QypFLg8dx7PqCBIhNYhPL2TL2BFwlcbFTUP-eVC3bBU5jjd97M_MeITtAc6Ag9kd5E2qLdc4oozllOQW5RNaBKjngIPjy4s2kKNfIRkojSoGXQ7VK1goGgpbA10l53-H43SfMbmNoQocxu8K68-1z9jTNjoztO97U2d31YXYb6mmD0STcIiuVqRNuL-omeTw9eTg-H1zenF0cH14OLFeiG0irjEKomHKFNIo6BdZZapWoXMlEyfuNLArgFRo2dGBwaArqKqOUALCy2CQHc93x5KlBZ7Htoqn1OPrGxKkOxuvfP61_0c_hTUsQAtRMYG8hEMPrBFOnG59602rTYpgkzXihCgVsSP-HFlLIojdZ9FA-h9oYUopYfW0EVM_C0SM9D0fPwtGU6Z7X03Z_XvNF-kzj-1zsPX3zGHWyHluLzke0nXbB_z3hAxoXohM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376730176</pqid></control><display><type>article</type><title>Stepwise Promoter Melting by Bacterial RNA Polymerase</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, James ; Chiu, Courtney ; Gopalkrishnan, Saumya ; Chen, Albert Y. ; Olinares, Paul Dominic B. ; Saecker, Ruth M. ; Winkelman, Jared T. ; Maloney, Michael F. ; Chait, Brian T. ; Ross, Wilma ; Gourse, Richard L. ; Campbell, Elizabeth A. ; Darst, Seth A.</creator><creatorcontrib>Chen, James ; Chiu, Courtney ; Gopalkrishnan, Saumya ; Chen, Albert Y. ; Olinares, Paul Dominic B. ; Saecker, Ruth M. ; Winkelman, Jared T. ; Maloney, Michael F. ; Chait, Brian T. ; Ross, Wilma ; Gourse, Richard L. ; Campbell, Elizabeth A. ; Darst, Seth A.</creatorcontrib><description>Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown structure. We use single-particle cryoelectron microscopy to visualize seven intermediates containing Escherichia coli RNAP with the transcription factor TraR en route to forming RPo. The structures span the RPo formation pathway from initial recognition of the duplex promoter in a closed complex to the final RPo. The structures and supporting biochemical data define RNAP and promoter DNA conformational changes that delineate steps on the pathway, including previously undetected transient promoter-RNAP interactions that contribute to populating the intermediates but do not occur in RPo. Our work provides a structural basis for understanding RPo formation and its regulation, a major checkpoint in gene expression throughout evolution.
[Display omitted]
•Cryo-EM structures of 7 intermediates in promoter opening pathway from RPc to RPo•Intermediates populated by using an inhibitor and a promoter with unstable RPo•RNAP and DNA conformational changes in mobile regions mark the steps in the pathway•Transient interactions identified in intermediates are not found in RPc or RPo
Cryo-EM structures of RNA polymerase-promoter DNA intermediates identify stages in transcription initiation from the initial recognition of double-stranded promoter DNA in RPc to final promoter melting in RPo. Structural analyses of RNA polymerase and DNA conformational changes delineate steps in the pathway. Biochemical and genetic characterization support their functional importance.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.02.017</identifier><identifier>PMID: 32160514</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>active sites ; Conformational change ; cryo-electron microscopy ; Cryoelectron Microscopy ; DNA ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - genetics ; Escherichia coli ; Escherichia coli - genetics ; evolution ; gene expression ; melting ; Nucleic Acid Conformation ; Open promoter complex formation ; Promoter DNA ; Promoter Regions, Genetic - genetics ; Protein Binding - genetics ; Protein Conformation ; RNA polymerase ; RNA, Bacterial - genetics ; transcription factors ; Transcription initiation ; Transcription Initiation, Genetic ; TraR</subject><ispartof>Molecular cell, 2020-04, Vol.78 (2), p.275-288.e6</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-7c9a9e1f29d37a90d91cdc0c96fd52654001ce614fea28d1ae8a30dfa99611c73</citedby><cites>FETCH-LOGICAL-c496t-7c9a9e1f29d37a90d91cdc0c96fd52654001ce614fea28d1ae8a30dfa99611c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.02.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32160514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, James</creatorcontrib><creatorcontrib>Chiu, Courtney</creatorcontrib><creatorcontrib>Gopalkrishnan, Saumya</creatorcontrib><creatorcontrib>Chen, Albert Y.</creatorcontrib><creatorcontrib>Olinares, Paul Dominic B.</creatorcontrib><creatorcontrib>Saecker, Ruth M.</creatorcontrib><creatorcontrib>Winkelman, Jared T.</creatorcontrib><creatorcontrib>Maloney, Michael F.</creatorcontrib><creatorcontrib>Chait, Brian T.</creatorcontrib><creatorcontrib>Ross, Wilma</creatorcontrib><creatorcontrib>Gourse, Richard L.</creatorcontrib><creatorcontrib>Campbell, Elizabeth A.</creatorcontrib><creatorcontrib>Darst, Seth A.</creatorcontrib><title>Stepwise Promoter Melting by Bacterial RNA Polymerase</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown structure. We use single-particle cryoelectron microscopy to visualize seven intermediates containing Escherichia coli RNAP with the transcription factor TraR en route to forming RPo. The structures span the RPo formation pathway from initial recognition of the duplex promoter in a closed complex to the final RPo. The structures and supporting biochemical data define RNAP and promoter DNA conformational changes that delineate steps on the pathway, including previously undetected transient promoter-RNAP interactions that contribute to populating the intermediates but do not occur in RPo. Our work provides a structural basis for understanding RPo formation and its regulation, a major checkpoint in gene expression throughout evolution.
[Display omitted]
•Cryo-EM structures of 7 intermediates in promoter opening pathway from RPc to RPo•Intermediates populated by using an inhibitor and a promoter with unstable RPo•RNAP and DNA conformational changes in mobile regions mark the steps in the pathway•Transient interactions identified in intermediates are not found in RPc or RPo
Cryo-EM structures of RNA polymerase-promoter DNA intermediates identify stages in transcription initiation from the initial recognition of double-stranded promoter DNA in RPc to final promoter melting in RPo. Structural analyses of RNA polymerase and DNA conformational changes delineate steps in the pathway. Biochemical and genetic characterization support their functional importance.</description><subject>active sites</subject><subject>Conformational change</subject><subject>cryo-electron microscopy</subject><subject>Cryoelectron Microscopy</subject><subject>DNA</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>evolution</subject><subject>gene expression</subject><subject>melting</subject><subject>Nucleic Acid Conformation</subject><subject>Open promoter complex formation</subject><subject>Promoter DNA</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding - genetics</subject><subject>Protein Conformation</subject><subject>RNA polymerase</subject><subject>RNA, Bacterial - genetics</subject><subject>transcription factors</subject><subject>Transcription initiation</subject><subject>Transcription Initiation, Genetic</subject><subject>TraR</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUclOwzAQtRCI_Q8QypFLg8dx7PqCBIhNYhPL2TL2BFwlcbFTUP-eVC3bBU5jjd97M_MeITtAc6Ag9kd5E2qLdc4oozllOQW5RNaBKjngIPjy4s2kKNfIRkojSoGXQ7VK1goGgpbA10l53-H43SfMbmNoQocxu8K68-1z9jTNjoztO97U2d31YXYb6mmD0STcIiuVqRNuL-omeTw9eTg-H1zenF0cH14OLFeiG0irjEKomHKFNIo6BdZZapWoXMlEyfuNLArgFRo2dGBwaArqKqOUALCy2CQHc93x5KlBZ7Htoqn1OPrGxKkOxuvfP61_0c_hTUsQAtRMYG8hEMPrBFOnG59602rTYpgkzXihCgVsSP-HFlLIojdZ9FA-h9oYUopYfW0EVM_C0SM9D0fPwtGU6Z7X03Z_XvNF-kzj-1zsPX3zGHWyHluLzke0nXbB_z3hAxoXohM</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Chen, James</creator><creator>Chiu, Courtney</creator><creator>Gopalkrishnan, Saumya</creator><creator>Chen, Albert Y.</creator><creator>Olinares, Paul Dominic B.</creator><creator>Saecker, Ruth M.</creator><creator>Winkelman, Jared T.</creator><creator>Maloney, Michael F.</creator><creator>Chait, Brian T.</creator><creator>Ross, Wilma</creator><creator>Gourse, Richard L.</creator><creator>Campbell, Elizabeth A.</creator><creator>Darst, Seth A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20200416</creationdate><title>Stepwise Promoter Melting by Bacterial RNA Polymerase</title><author>Chen, James ; Chiu, Courtney ; Gopalkrishnan, Saumya ; Chen, Albert Y. ; Olinares, Paul Dominic B. ; Saecker, Ruth M. ; Winkelman, Jared T. ; Maloney, Michael F. ; Chait, Brian T. ; Ross, Wilma ; Gourse, Richard L. ; Campbell, Elizabeth A. ; Darst, Seth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-7c9a9e1f29d37a90d91cdc0c96fd52654001ce614fea28d1ae8a30dfa99611c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>active sites</topic><topic>Conformational change</topic><topic>cryo-electron microscopy</topic><topic>Cryoelectron Microscopy</topic><topic>DNA</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>evolution</topic><topic>gene expression</topic><topic>melting</topic><topic>Nucleic Acid Conformation</topic><topic>Open promoter complex formation</topic><topic>Promoter DNA</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding - genetics</topic><topic>Protein Conformation</topic><topic>RNA polymerase</topic><topic>RNA, Bacterial - genetics</topic><topic>transcription factors</topic><topic>Transcription initiation</topic><topic>Transcription Initiation, Genetic</topic><topic>TraR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, James</creatorcontrib><creatorcontrib>Chiu, Courtney</creatorcontrib><creatorcontrib>Gopalkrishnan, Saumya</creatorcontrib><creatorcontrib>Chen, Albert Y.</creatorcontrib><creatorcontrib>Olinares, Paul Dominic B.</creatorcontrib><creatorcontrib>Saecker, Ruth M.</creatorcontrib><creatorcontrib>Winkelman, Jared T.</creatorcontrib><creatorcontrib>Maloney, Michael F.</creatorcontrib><creatorcontrib>Chait, Brian T.</creatorcontrib><creatorcontrib>Ross, Wilma</creatorcontrib><creatorcontrib>Gourse, Richard L.</creatorcontrib><creatorcontrib>Campbell, Elizabeth A.</creatorcontrib><creatorcontrib>Darst, Seth A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, James</au><au>Chiu, Courtney</au><au>Gopalkrishnan, Saumya</au><au>Chen, Albert Y.</au><au>Olinares, Paul Dominic B.</au><au>Saecker, Ruth M.</au><au>Winkelman, Jared T.</au><au>Maloney, Michael F.</au><au>Chait, Brian T.</au><au>Ross, Wilma</au><au>Gourse, Richard L.</au><au>Campbell, Elizabeth A.</au><au>Darst, Seth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stepwise Promoter Melting by Bacterial RNA Polymerase</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-04-16</date><risdate>2020</risdate><volume>78</volume><issue>2</issue><spage>275</spage><epage>288.e6</epage><pages>275-288.e6</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown structure. We use single-particle cryoelectron microscopy to visualize seven intermediates containing Escherichia coli RNAP with the transcription factor TraR en route to forming RPo. The structures span the RPo formation pathway from initial recognition of the duplex promoter in a closed complex to the final RPo. The structures and supporting biochemical data define RNAP and promoter DNA conformational changes that delineate steps on the pathway, including previously undetected transient promoter-RNAP interactions that contribute to populating the intermediates but do not occur in RPo. Our work provides a structural basis for understanding RPo formation and its regulation, a major checkpoint in gene expression throughout evolution.
[Display omitted]
•Cryo-EM structures of 7 intermediates in promoter opening pathway from RPc to RPo•Intermediates populated by using an inhibitor and a promoter with unstable RPo•RNAP and DNA conformational changes in mobile regions mark the steps in the pathway•Transient interactions identified in intermediates are not found in RPc or RPo
Cryo-EM structures of RNA polymerase-promoter DNA intermediates identify stages in transcription initiation from the initial recognition of double-stranded promoter DNA in RPc to final promoter melting in RPo. Structural analyses of RNA polymerase and DNA conformational changes delineate steps in the pathway. Biochemical and genetic characterization support their functional importance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32160514</pmid><doi>10.1016/j.molcel.2020.02.017</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2020-04, Vol.78 (2), p.275-288.e6 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166197 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | active sites Conformational change cryo-electron microscopy Cryoelectron Microscopy DNA DNA-directed RNA polymerase DNA-Directed RNA Polymerases - chemistry DNA-Directed RNA Polymerases - genetics Escherichia coli Escherichia coli - genetics evolution gene expression melting Nucleic Acid Conformation Open promoter complex formation Promoter DNA Promoter Regions, Genetic - genetics Protein Binding - genetics Protein Conformation RNA polymerase RNA, Bacterial - genetics transcription factors Transcription initiation Transcription Initiation, Genetic TraR |
title | Stepwise Promoter Melting by Bacterial RNA Polymerase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stepwise%20Promoter%20Melting%20by%20Bacterial%20RNA%20Polymerase&rft.jtitle=Molecular%20cell&rft.au=Chen,%20James&rft.date=2020-04-16&rft.volume=78&rft.issue=2&rft.spage=275&rft.epage=288.e6&rft.pages=275-288.e6&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.02.017&rft_dat=%3Cproquest_pubme%3E2376730176%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376730176&rft_id=info:pmid/32160514&rft_els_id=S1097276520301106&rfr_iscdi=true |