A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm
hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safet...
Gespeichert in:
Veröffentlicht in: | Toxicology and applied pharmacology 2020-05, Vol.394 (C), p.114961, Article 114961 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 114961 |
container_title | Toxicology and applied pharmacology |
container_volume | 394 |
creator | Ridder, Bradley J. Leishman, Derek J. Bridgland-Taylor, Matthew Samieegohar, Mohammadreza Han, Xiaomei Wu, Wendy W. Randolph, Aaron Tran, Phu Sheng, Jiansong Danker, Timm Lindqvist, Anders Konrad, Daniel Hebeisen, Simon Polonchuk, Liudmila Gissinger, Evgenia Renganathan, Muthukrishnan Koci, Bryan Wei, Haiyang Fan, Jingsong Levesque, Paul Kwagh, Jae Imredy, John Zhai, Jin Rogers, Marc Humphries, Edward Kirby, Robert Stoelzle-Feix, Sonja Brinkwirth, Nina Rotordam, Maria Giustina Becker, Nadine Friis, Søren Rapedius, Markus Goetze, Tom A. Strassmaier, Tim Okeyo, George Kramer, James Kuryshev, Yuri Wu, Caiyun Himmel, Herbert Mirams, Gary R. Strauss, David G. Bardenet, Rémi Li, Zhihua |
description | hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed.
A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates.
A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used.
This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.
•hERG potency/safety margin is a widely used nonclinical cardiac safety strategy.•A new regulatory paradigm promotes the integration of nonclinical and clinical data.•Lack of uncertainty quantification hindered using hERG potency in the new paradigm.•A systematic method was established to address this limitation.•Analysis supports using different safety margin thresholds in different context. |
doi_str_mv | 10.1016/j.taap.2020.114961 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041008X20300855</els_id><sourcerecordid>S0041008X20300855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-f150405791a98262afd4b048080c5740f90e8566db7355c9730d5fbfe5b62ad13</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaTZJ_0APRfTWg7cj2ZJtKIUlpElhIRBayE3Ikryr7VoykrLF_74yTkPbQ09CM9883sxD6C2BNQHCPx7WScpxTYHmAqlaTl6gFYGWF1CW5Uu0AqhIAdA8nKHzGA8A0FYVeY3OSkqhLTlboWGD4xSTGWSyCscUZDK7Cfc-YBOTnctuh_fX9ze4O3r1A48-GacmLJ3GNkVsh_FoVca8yx-HJXbmJ1YyaCuzoOxNmvAog9R2N1yiV708RvPm6b1A379cf7u6LbZ3N1-vNttCMcJT0RMGFbC6JbJtKKey11UHVQMNKFZX0LdgGsa57uqSMdXWJWjWd71hXYY1KS_Q50V3fOwGo5VxebGjGENeKEzCSyv-7ji7Fzt_EjXhHOo6C7xfBHw-gojKJqP2yjtnVBIkI5xChj4s0P4f7dvNVsw1oE1dNw0_zY7owqrgYwymfx4gIOY0xUHMaYo5TbGkmYfe_bnG88jv-DLwaQFMPubJmjBbzfEYbcPsVHv7P_1fYcexHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ridder, Bradley J. ; Leishman, Derek J. ; Bridgland-Taylor, Matthew ; Samieegohar, Mohammadreza ; Han, Xiaomei ; Wu, Wendy W. ; Randolph, Aaron ; Tran, Phu ; Sheng, Jiansong ; Danker, Timm ; Lindqvist, Anders ; Konrad, Daniel ; Hebeisen, Simon ; Polonchuk, Liudmila ; Gissinger, Evgenia ; Renganathan, Muthukrishnan ; Koci, Bryan ; Wei, Haiyang ; Fan, Jingsong ; Levesque, Paul ; Kwagh, Jae ; Imredy, John ; Zhai, Jin ; Rogers, Marc ; Humphries, Edward ; Kirby, Robert ; Stoelzle-Feix, Sonja ; Brinkwirth, Nina ; Rotordam, Maria Giustina ; Becker, Nadine ; Friis, Søren ; Rapedius, Markus ; Goetze, Tom A. ; Strassmaier, Tim ; Okeyo, George ; Kramer, James ; Kuryshev, Yuri ; Wu, Caiyun ; Himmel, Herbert ; Mirams, Gary R. ; Strauss, David G. ; Bardenet, Rémi ; Li, Zhihua</creator><creatorcontrib>Ridder, Bradley J. ; Leishman, Derek J. ; Bridgland-Taylor, Matthew ; Samieegohar, Mohammadreza ; Han, Xiaomei ; Wu, Wendy W. ; Randolph, Aaron ; Tran, Phu ; Sheng, Jiansong ; Danker, Timm ; Lindqvist, Anders ; Konrad, Daniel ; Hebeisen, Simon ; Polonchuk, Liudmila ; Gissinger, Evgenia ; Renganathan, Muthukrishnan ; Koci, Bryan ; Wei, Haiyang ; Fan, Jingsong ; Levesque, Paul ; Kwagh, Jae ; Imredy, John ; Zhai, Jin ; Rogers, Marc ; Humphries, Edward ; Kirby, Robert ; Stoelzle-Feix, Sonja ; Brinkwirth, Nina ; Rotordam, Maria Giustina ; Becker, Nadine ; Friis, Søren ; Rapedius, Markus ; Goetze, Tom A. ; Strassmaier, Tim ; Okeyo, George ; Kramer, James ; Kuryshev, Yuri ; Wu, Caiyun ; Himmel, Herbert ; Mirams, Gary R. ; Strauss, David G. ; Bardenet, Rémi ; Li, Zhihua ; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><description>hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed.
A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates.
A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used.
This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.
•hERG potency/safety margin is a widely used nonclinical cardiac safety strategy.•A new regulatory paradigm promotes the integration of nonclinical and clinical data.•Lack of uncertainty quantification hindered using hERG potency in the new paradigm.•A systematic method was established to address this limitation.•Analysis supports using different safety margin thresholds in different context.</description><identifier>ISSN: 0041-008X</identifier><identifier>EISSN: 1096-0333</identifier><identifier>DOI: 10.1016/j.taap.2020.114961</identifier><identifier>PMID: 32209365</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Bayes Theorem ; Cellular Biology ; Computer Simulation ; ERG1 Potassium Channel - antagonists & inhibitors ; Humans ; Life Sciences ; Mathematics ; Models, Biological ; Patch-Clamp Techniques ; Pharmacology & Pharmacy ; Potassium Channel Blockers - pharmacology ; Risk Assessment - methods ; Safety ; Statistics ; Torsades de Pointes - chemically induced ; Torsades de Pointes - physiopathology ; Toxicology</subject><ispartof>Toxicology and applied pharmacology, 2020-05, Vol.394 (C), p.114961, Article 114961</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-f150405791a98262afd4b048080c5740f90e8566db7355c9730d5fbfe5b62ad13</citedby><cites>FETCH-LOGICAL-c516t-f150405791a98262afd4b048080c5740f90e8566db7355c9730d5fbfe5b62ad13</cites><orcidid>0000-0002-1366-3634 ; 0000-0002-2772-0839 ; 0000-0002-1094-9493 ; 0000000213663634 ; 0000000227720839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.taap.2020.114961$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32209365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02877886$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1607620$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ridder, Bradley J.</creatorcontrib><creatorcontrib>Leishman, Derek J.</creatorcontrib><creatorcontrib>Bridgland-Taylor, Matthew</creatorcontrib><creatorcontrib>Samieegohar, Mohammadreza</creatorcontrib><creatorcontrib>Han, Xiaomei</creatorcontrib><creatorcontrib>Wu, Wendy W.</creatorcontrib><creatorcontrib>Randolph, Aaron</creatorcontrib><creatorcontrib>Tran, Phu</creatorcontrib><creatorcontrib>Sheng, Jiansong</creatorcontrib><creatorcontrib>Danker, Timm</creatorcontrib><creatorcontrib>Lindqvist, Anders</creatorcontrib><creatorcontrib>Konrad, Daniel</creatorcontrib><creatorcontrib>Hebeisen, Simon</creatorcontrib><creatorcontrib>Polonchuk, Liudmila</creatorcontrib><creatorcontrib>Gissinger, Evgenia</creatorcontrib><creatorcontrib>Renganathan, Muthukrishnan</creatorcontrib><creatorcontrib>Koci, Bryan</creatorcontrib><creatorcontrib>Wei, Haiyang</creatorcontrib><creatorcontrib>Fan, Jingsong</creatorcontrib><creatorcontrib>Levesque, Paul</creatorcontrib><creatorcontrib>Kwagh, Jae</creatorcontrib><creatorcontrib>Imredy, John</creatorcontrib><creatorcontrib>Zhai, Jin</creatorcontrib><creatorcontrib>Rogers, Marc</creatorcontrib><creatorcontrib>Humphries, Edward</creatorcontrib><creatorcontrib>Kirby, Robert</creatorcontrib><creatorcontrib>Stoelzle-Feix, Sonja</creatorcontrib><creatorcontrib>Brinkwirth, Nina</creatorcontrib><creatorcontrib>Rotordam, Maria Giustina</creatorcontrib><creatorcontrib>Becker, Nadine</creatorcontrib><creatorcontrib>Friis, Søren</creatorcontrib><creatorcontrib>Rapedius, Markus</creatorcontrib><creatorcontrib>Goetze, Tom A.</creatorcontrib><creatorcontrib>Strassmaier, Tim</creatorcontrib><creatorcontrib>Okeyo, George</creatorcontrib><creatorcontrib>Kramer, James</creatorcontrib><creatorcontrib>Kuryshev, Yuri</creatorcontrib><creatorcontrib>Wu, Caiyun</creatorcontrib><creatorcontrib>Himmel, Herbert</creatorcontrib><creatorcontrib>Mirams, Gary R.</creatorcontrib><creatorcontrib>Strauss, David G.</creatorcontrib><creatorcontrib>Bardenet, Rémi</creatorcontrib><creatorcontrib>Li, Zhihua</creatorcontrib><creatorcontrib>Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><title>A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm</title><title>Toxicology and applied pharmacology</title><addtitle>Toxicol Appl Pharmacol</addtitle><description>hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed.
A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates.
A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used.
This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.
•hERG potency/safety margin is a widely used nonclinical cardiac safety strategy.•A new regulatory paradigm promotes the integration of nonclinical and clinical data.•Lack of uncertainty quantification hindered using hERG potency in the new paradigm.•A systematic method was established to address this limitation.•Analysis supports using different safety margin thresholds in different context.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Bayes Theorem</subject><subject>Cellular Biology</subject><subject>Computer Simulation</subject><subject>ERG1 Potassium Channel - antagonists & inhibitors</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Patch-Clamp Techniques</subject><subject>Pharmacology & Pharmacy</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Risk Assessment - methods</subject><subject>Safety</subject><subject>Statistics</subject><subject>Torsades de Pointes - chemically induced</subject><subject>Torsades de Pointes - physiopathology</subject><subject>Toxicology</subject><issn>0041-008X</issn><issn>1096-0333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAQhUVpaTZJ_0APRfTWg7cj2ZJtKIUlpElhIRBayE3Ikryr7VoykrLF_74yTkPbQ09CM9883sxD6C2BNQHCPx7WScpxTYHmAqlaTl6gFYGWF1CW5Uu0AqhIAdA8nKHzGA8A0FYVeY3OSkqhLTlboWGD4xSTGWSyCscUZDK7Cfc-YBOTnctuh_fX9ze4O3r1A48-GacmLJ3GNkVsh_FoVca8yx-HJXbmJ1YyaCuzoOxNmvAog9R2N1yiV708RvPm6b1A379cf7u6LbZ3N1-vNttCMcJT0RMGFbC6JbJtKKey11UHVQMNKFZX0LdgGsa57uqSMdXWJWjWd71hXYY1KS_Q50V3fOwGo5VxebGjGENeKEzCSyv-7ji7Fzt_EjXhHOo6C7xfBHw-gojKJqP2yjtnVBIkI5xChj4s0P4f7dvNVsw1oE1dNw0_zY7owqrgYwymfx4gIOY0xUHMaYo5TbGkmYfe_bnG88jv-DLwaQFMPubJmjBbzfEYbcPsVHv7P_1fYcexHw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ridder, Bradley J.</creator><creator>Leishman, Derek J.</creator><creator>Bridgland-Taylor, Matthew</creator><creator>Samieegohar, Mohammadreza</creator><creator>Han, Xiaomei</creator><creator>Wu, Wendy W.</creator><creator>Randolph, Aaron</creator><creator>Tran, Phu</creator><creator>Sheng, Jiansong</creator><creator>Danker, Timm</creator><creator>Lindqvist, Anders</creator><creator>Konrad, Daniel</creator><creator>Hebeisen, Simon</creator><creator>Polonchuk, Liudmila</creator><creator>Gissinger, Evgenia</creator><creator>Renganathan, Muthukrishnan</creator><creator>Koci, Bryan</creator><creator>Wei, Haiyang</creator><creator>Fan, Jingsong</creator><creator>Levesque, Paul</creator><creator>Kwagh, Jae</creator><creator>Imredy, John</creator><creator>Zhai, Jin</creator><creator>Rogers, Marc</creator><creator>Humphries, Edward</creator><creator>Kirby, Robert</creator><creator>Stoelzle-Feix, Sonja</creator><creator>Brinkwirth, Nina</creator><creator>Rotordam, Maria Giustina</creator><creator>Becker, Nadine</creator><creator>Friis, Søren</creator><creator>Rapedius, Markus</creator><creator>Goetze, Tom A.</creator><creator>Strassmaier, Tim</creator><creator>Okeyo, George</creator><creator>Kramer, James</creator><creator>Kuryshev, Yuri</creator><creator>Wu, Caiyun</creator><creator>Himmel, Herbert</creator><creator>Mirams, Gary R.</creator><creator>Strauss, David G.</creator><creator>Bardenet, Rémi</creator><creator>Li, Zhihua</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1366-3634</orcidid><orcidid>https://orcid.org/0000-0002-2772-0839</orcidid><orcidid>https://orcid.org/0000-0002-1094-9493</orcidid><orcidid>https://orcid.org/0000000213663634</orcidid><orcidid>https://orcid.org/0000000227720839</orcidid></search><sort><creationdate>20200501</creationdate><title>A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm</title><author>Ridder, Bradley J. ; Leishman, Derek J. ; Bridgland-Taylor, Matthew ; Samieegohar, Mohammadreza ; Han, Xiaomei ; Wu, Wendy W. ; Randolph, Aaron ; Tran, Phu ; Sheng, Jiansong ; Danker, Timm ; Lindqvist, Anders ; Konrad, Daniel ; Hebeisen, Simon ; Polonchuk, Liudmila ; Gissinger, Evgenia ; Renganathan, Muthukrishnan ; Koci, Bryan ; Wei, Haiyang ; Fan, Jingsong ; Levesque, Paul ; Kwagh, Jae ; Imredy, John ; Zhai, Jin ; Rogers, Marc ; Humphries, Edward ; Kirby, Robert ; Stoelzle-Feix, Sonja ; Brinkwirth, Nina ; Rotordam, Maria Giustina ; Becker, Nadine ; Friis, Søren ; Rapedius, Markus ; Goetze, Tom A. ; Strassmaier, Tim ; Okeyo, George ; Kramer, James ; Kuryshev, Yuri ; Wu, Caiyun ; Himmel, Herbert ; Mirams, Gary R. ; Strauss, David G. ; Bardenet, Rémi ; Li, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-f150405791a98262afd4b048080c5740f90e8566db7355c9730d5fbfe5b62ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Bayes Theorem</topic><topic>Cellular Biology</topic><topic>Computer Simulation</topic><topic>ERG1 Potassium Channel - antagonists & inhibitors</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Patch-Clamp Techniques</topic><topic>Pharmacology & Pharmacy</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Risk Assessment - methods</topic><topic>Safety</topic><topic>Statistics</topic><topic>Torsades de Pointes - chemically induced</topic><topic>Torsades de Pointes - physiopathology</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ridder, Bradley J.</creatorcontrib><creatorcontrib>Leishman, Derek J.</creatorcontrib><creatorcontrib>Bridgland-Taylor, Matthew</creatorcontrib><creatorcontrib>Samieegohar, Mohammadreza</creatorcontrib><creatorcontrib>Han, Xiaomei</creatorcontrib><creatorcontrib>Wu, Wendy W.</creatorcontrib><creatorcontrib>Randolph, Aaron</creatorcontrib><creatorcontrib>Tran, Phu</creatorcontrib><creatorcontrib>Sheng, Jiansong</creatorcontrib><creatorcontrib>Danker, Timm</creatorcontrib><creatorcontrib>Lindqvist, Anders</creatorcontrib><creatorcontrib>Konrad, Daniel</creatorcontrib><creatorcontrib>Hebeisen, Simon</creatorcontrib><creatorcontrib>Polonchuk, Liudmila</creatorcontrib><creatorcontrib>Gissinger, Evgenia</creatorcontrib><creatorcontrib>Renganathan, Muthukrishnan</creatorcontrib><creatorcontrib>Koci, Bryan</creatorcontrib><creatorcontrib>Wei, Haiyang</creatorcontrib><creatorcontrib>Fan, Jingsong</creatorcontrib><creatorcontrib>Levesque, Paul</creatorcontrib><creatorcontrib>Kwagh, Jae</creatorcontrib><creatorcontrib>Imredy, John</creatorcontrib><creatorcontrib>Zhai, Jin</creatorcontrib><creatorcontrib>Rogers, Marc</creatorcontrib><creatorcontrib>Humphries, Edward</creatorcontrib><creatorcontrib>Kirby, Robert</creatorcontrib><creatorcontrib>Stoelzle-Feix, Sonja</creatorcontrib><creatorcontrib>Brinkwirth, Nina</creatorcontrib><creatorcontrib>Rotordam, Maria Giustina</creatorcontrib><creatorcontrib>Becker, Nadine</creatorcontrib><creatorcontrib>Friis, Søren</creatorcontrib><creatorcontrib>Rapedius, Markus</creatorcontrib><creatorcontrib>Goetze, Tom A.</creatorcontrib><creatorcontrib>Strassmaier, Tim</creatorcontrib><creatorcontrib>Okeyo, George</creatorcontrib><creatorcontrib>Kramer, James</creatorcontrib><creatorcontrib>Kuryshev, Yuri</creatorcontrib><creatorcontrib>Wu, Caiyun</creatorcontrib><creatorcontrib>Himmel, Herbert</creatorcontrib><creatorcontrib>Mirams, Gary R.</creatorcontrib><creatorcontrib>Strauss, David G.</creatorcontrib><creatorcontrib>Bardenet, Rémi</creatorcontrib><creatorcontrib>Li, Zhihua</creatorcontrib><creatorcontrib>Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Toxicology and applied pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ridder, Bradley J.</au><au>Leishman, Derek J.</au><au>Bridgland-Taylor, Matthew</au><au>Samieegohar, Mohammadreza</au><au>Han, Xiaomei</au><au>Wu, Wendy W.</au><au>Randolph, Aaron</au><au>Tran, Phu</au><au>Sheng, Jiansong</au><au>Danker, Timm</au><au>Lindqvist, Anders</au><au>Konrad, Daniel</au><au>Hebeisen, Simon</au><au>Polonchuk, Liudmila</au><au>Gissinger, Evgenia</au><au>Renganathan, Muthukrishnan</au><au>Koci, Bryan</au><au>Wei, Haiyang</au><au>Fan, Jingsong</au><au>Levesque, Paul</au><au>Kwagh, Jae</au><au>Imredy, John</au><au>Zhai, Jin</au><au>Rogers, Marc</au><au>Humphries, Edward</au><au>Kirby, Robert</au><au>Stoelzle-Feix, Sonja</au><au>Brinkwirth, Nina</au><au>Rotordam, Maria Giustina</au><au>Becker, Nadine</au><au>Friis, Søren</au><au>Rapedius, Markus</au><au>Goetze, Tom A.</au><au>Strassmaier, Tim</au><au>Okeyo, George</au><au>Kramer, James</au><au>Kuryshev, Yuri</au><au>Wu, Caiyun</au><au>Himmel, Herbert</au><au>Mirams, Gary R.</au><au>Strauss, David G.</au><au>Bardenet, Rémi</au><au>Li, Zhihua</au><aucorp>Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm</atitle><jtitle>Toxicology and applied pharmacology</jtitle><addtitle>Toxicol Appl Pharmacol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>394</volume><issue>C</issue><spage>114961</spage><pages>114961-</pages><artnum>114961</artnum><issn>0041-008X</issn><eissn>1096-0333</eissn><abstract>hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed.
A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates.
A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used.
This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.
•hERG potency/safety margin is a widely used nonclinical cardiac safety strategy.•A new regulatory paradigm promotes the integration of nonclinical and clinical data.•Lack of uncertainty quantification hindered using hERG potency in the new paradigm.•A systematic method was established to address this limitation.•Analysis supports using different safety margin thresholds in different context.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32209365</pmid><doi>10.1016/j.taap.2020.114961</doi><orcidid>https://orcid.org/0000-0002-1366-3634</orcidid><orcidid>https://orcid.org/0000-0002-2772-0839</orcidid><orcidid>https://orcid.org/0000-0002-1094-9493</orcidid><orcidid>https://orcid.org/0000000213663634</orcidid><orcidid>https://orcid.org/0000000227720839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-008X |
ispartof | Toxicology and applied pharmacology, 2020-05, Vol.394 (C), p.114961, Article 114961 |
issn | 0041-008X 1096-0333 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166077 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | 60 APPLIED LIFE SCIENCES Bayes Theorem Cellular Biology Computer Simulation ERG1 Potassium Channel - antagonists & inhibitors Humans Life Sciences Mathematics Models, Biological Patch-Clamp Techniques Pharmacology & Pharmacy Potassium Channel Blockers - pharmacology Risk Assessment - methods Safety Statistics Torsades de Pointes - chemically induced Torsades de Pointes - physiopathology Toxicology |
title | A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20strategy%20for%20estimating%20hERG%20block%20potency%20and%20its%20implications%20in%20a%20new%20cardiac%20safety%20paradigm&rft.jtitle=Toxicology%20and%20applied%20pharmacology&rft.au=Ridder,%20Bradley%20J.&rft.aucorp=Oak%20Ridge%20Institute%20for%20Science%20and%20Education%20(ORISE),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-05-01&rft.volume=394&rft.issue=C&rft.spage=114961&rft.pages=114961-&rft.artnum=114961&rft.issn=0041-008X&rft.eissn=1096-0333&rft_id=info:doi/10.1016/j.taap.2020.114961&rft_dat=%3Celsevier_pubme%3ES0041008X20300855%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32209365&rft_els_id=S0041008X20300855&rfr_iscdi=true |