A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm

hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2020-05, Vol.394 (C), p.114961, Article 114961
Hauptverfasser: Ridder, Bradley J., Leishman, Derek J., Bridgland-Taylor, Matthew, Samieegohar, Mohammadreza, Han, Xiaomei, Wu, Wendy W., Randolph, Aaron, Tran, Phu, Sheng, Jiansong, Danker, Timm, Lindqvist, Anders, Konrad, Daniel, Hebeisen, Simon, Polonchuk, Liudmila, Gissinger, Evgenia, Renganathan, Muthukrishnan, Koci, Bryan, Wei, Haiyang, Fan, Jingsong, Levesque, Paul, Kwagh, Jae, Imredy, John, Zhai, Jin, Rogers, Marc, Humphries, Edward, Kirby, Robert, Stoelzle-Feix, Sonja, Brinkwirth, Nina, Rotordam, Maria Giustina, Becker, Nadine, Friis, Søren, Rapedius, Markus, Goetze, Tom A., Strassmaier, Tim, Okeyo, George, Kramer, James, Kuryshev, Yuri, Wu, Caiyun, Himmel, Herbert, Mirams, Gary R., Strauss, David G., Bardenet, Rémi, Li, Zhihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 114961
container_title Toxicology and applied pharmacology
container_volume 394
creator Ridder, Bradley J.
Leishman, Derek J.
Bridgland-Taylor, Matthew
Samieegohar, Mohammadreza
Han, Xiaomei
Wu, Wendy W.
Randolph, Aaron
Tran, Phu
Sheng, Jiansong
Danker, Timm
Lindqvist, Anders
Konrad, Daniel
Hebeisen, Simon
Polonchuk, Liudmila
Gissinger, Evgenia
Renganathan, Muthukrishnan
Koci, Bryan
Wei, Haiyang
Fan, Jingsong
Levesque, Paul
Kwagh, Jae
Imredy, John
Zhai, Jin
Rogers, Marc
Humphries, Edward
Kirby, Robert
Stoelzle-Feix, Sonja
Brinkwirth, Nina
Rotordam, Maria Giustina
Becker, Nadine
Friis, Søren
Rapedius, Markus
Goetze, Tom A.
Strassmaier, Tim
Okeyo, George
Kramer, James
Kuryshev, Yuri
Wu, Caiyun
Himmel, Herbert
Mirams, Gary R.
Strauss, David G.
Bardenet, Rémi
Li, Zhihua
description hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment. •hERG potency/safety margin is a widely used nonclinical cardiac safety strategy.•A new regulatory paradigm promotes the integration of nonclinical and clinical data.•Lack of uncertainty quantification hindered using hERG potency in the new paradigm.•A systematic method was established to address this limitation.•Analysis supports using different safety margin thresholds in different context.
doi_str_mv 10.1016/j.taap.2020.114961
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041008X20300855</els_id><sourcerecordid>S0041008X20300855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-f150405791a98262afd4b048080c5740f90e8566db7355c9730d5fbfe5b62ad13</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaTZJ_0APRfTWg7cj2ZJtKIUlpElhIRBayE3Ikryr7VoykrLF_74yTkPbQ09CM9883sxD6C2BNQHCPx7WScpxTYHmAqlaTl6gFYGWF1CW5Uu0AqhIAdA8nKHzGA8A0FYVeY3OSkqhLTlboWGD4xSTGWSyCscUZDK7Cfc-YBOTnctuh_fX9ze4O3r1A48-GacmLJ3GNkVsh_FoVca8yx-HJXbmJ1YyaCuzoOxNmvAog9R2N1yiV708RvPm6b1A379cf7u6LbZ3N1-vNttCMcJT0RMGFbC6JbJtKKey11UHVQMNKFZX0LdgGsa57uqSMdXWJWjWd71hXYY1KS_Q50V3fOwGo5VxebGjGENeKEzCSyv-7ji7Fzt_EjXhHOo6C7xfBHw-gojKJqP2yjtnVBIkI5xChj4s0P4f7dvNVsw1oE1dNw0_zY7owqrgYwymfx4gIOY0xUHMaYo5TbGkmYfe_bnG88jv-DLwaQFMPubJmjBbzfEYbcPsVHv7P_1fYcexHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ridder, Bradley J. ; Leishman, Derek J. ; Bridgland-Taylor, Matthew ; Samieegohar, Mohammadreza ; Han, Xiaomei ; Wu, Wendy W. ; Randolph, Aaron ; Tran, Phu ; Sheng, Jiansong ; Danker, Timm ; Lindqvist, Anders ; Konrad, Daniel ; Hebeisen, Simon ; Polonchuk, Liudmila ; Gissinger, Evgenia ; Renganathan, Muthukrishnan ; Koci, Bryan ; Wei, Haiyang ; Fan, Jingsong ; Levesque, Paul ; Kwagh, Jae ; Imredy, John ; Zhai, Jin ; Rogers, Marc ; Humphries, Edward ; Kirby, Robert ; Stoelzle-Feix, Sonja ; Brinkwirth, Nina ; Rotordam, Maria Giustina ; Becker, Nadine ; Friis, Søren ; Rapedius, Markus ; Goetze, Tom A. ; Strassmaier, Tim ; Okeyo, George ; Kramer, James ; Kuryshev, Yuri ; Wu, Caiyun ; Himmel, Herbert ; Mirams, Gary R. ; Strauss, David G. ; Bardenet, Rémi ; Li, Zhihua</creator><creatorcontrib>Ridder, Bradley J. ; Leishman, Derek J. ; Bridgland-Taylor, Matthew ; Samieegohar, Mohammadreza ; Han, Xiaomei ; Wu, Wendy W. ; Randolph, Aaron ; Tran, Phu ; Sheng, Jiansong ; Danker, Timm ; Lindqvist, Anders ; Konrad, Daniel ; Hebeisen, Simon ; Polonchuk, Liudmila ; Gissinger, Evgenia ; Renganathan, Muthukrishnan ; Koci, Bryan ; Wei, Haiyang ; Fan, Jingsong ; Levesque, Paul ; Kwagh, Jae ; Imredy, John ; Zhai, Jin ; Rogers, Marc ; Humphries, Edward ; Kirby, Robert ; Stoelzle-Feix, Sonja ; Brinkwirth, Nina ; Rotordam, Maria Giustina ; Becker, Nadine ; Friis, Søren ; Rapedius, Markus ; Goetze, Tom A. ; Strassmaier, Tim ; Okeyo, George ; Kramer, James ; Kuryshev, Yuri ; Wu, Caiyun ; Himmel, Herbert ; Mirams, Gary R. ; Strauss, David G. ; Bardenet, Rémi ; Li, Zhihua ; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><description>hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment. •hERG potency/safety margin is a widely used nonclinical cardiac safety strategy.•A new regulatory paradigm promotes the integration of nonclinical and clinical data.•Lack of uncertainty quantification hindered using hERG potency in the new paradigm.•A systematic method was established to address this limitation.•Analysis supports using different safety margin thresholds in different context.</description><identifier>ISSN: 0041-008X</identifier><identifier>EISSN: 1096-0333</identifier><identifier>DOI: 10.1016/j.taap.2020.114961</identifier><identifier>PMID: 32209365</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Bayes Theorem ; Cellular Biology ; Computer Simulation ; ERG1 Potassium Channel - antagonists &amp; inhibitors ; Humans ; Life Sciences ; Mathematics ; Models, Biological ; Patch-Clamp Techniques ; Pharmacology &amp; Pharmacy ; Potassium Channel Blockers - pharmacology ; Risk Assessment - methods ; Safety ; Statistics ; Torsades de Pointes - chemically induced ; Torsades de Pointes - physiopathology ; Toxicology</subject><ispartof>Toxicology and applied pharmacology, 2020-05, Vol.394 (C), p.114961, Article 114961</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-f150405791a98262afd4b048080c5740f90e8566db7355c9730d5fbfe5b62ad13</citedby><cites>FETCH-LOGICAL-c516t-f150405791a98262afd4b048080c5740f90e8566db7355c9730d5fbfe5b62ad13</cites><orcidid>0000-0002-1366-3634 ; 0000-0002-2772-0839 ; 0000-0002-1094-9493 ; 0000000213663634 ; 0000000227720839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.taap.2020.114961$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32209365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02877886$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1607620$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ridder, Bradley J.</creatorcontrib><creatorcontrib>Leishman, Derek J.</creatorcontrib><creatorcontrib>Bridgland-Taylor, Matthew</creatorcontrib><creatorcontrib>Samieegohar, Mohammadreza</creatorcontrib><creatorcontrib>Han, Xiaomei</creatorcontrib><creatorcontrib>Wu, Wendy W.</creatorcontrib><creatorcontrib>Randolph, Aaron</creatorcontrib><creatorcontrib>Tran, Phu</creatorcontrib><creatorcontrib>Sheng, Jiansong</creatorcontrib><creatorcontrib>Danker, Timm</creatorcontrib><creatorcontrib>Lindqvist, Anders</creatorcontrib><creatorcontrib>Konrad, Daniel</creatorcontrib><creatorcontrib>Hebeisen, Simon</creatorcontrib><creatorcontrib>Polonchuk, Liudmila</creatorcontrib><creatorcontrib>Gissinger, Evgenia</creatorcontrib><creatorcontrib>Renganathan, Muthukrishnan</creatorcontrib><creatorcontrib>Koci, Bryan</creatorcontrib><creatorcontrib>Wei, Haiyang</creatorcontrib><creatorcontrib>Fan, Jingsong</creatorcontrib><creatorcontrib>Levesque, Paul</creatorcontrib><creatorcontrib>Kwagh, Jae</creatorcontrib><creatorcontrib>Imredy, John</creatorcontrib><creatorcontrib>Zhai, Jin</creatorcontrib><creatorcontrib>Rogers, Marc</creatorcontrib><creatorcontrib>Humphries, Edward</creatorcontrib><creatorcontrib>Kirby, Robert</creatorcontrib><creatorcontrib>Stoelzle-Feix, Sonja</creatorcontrib><creatorcontrib>Brinkwirth, Nina</creatorcontrib><creatorcontrib>Rotordam, Maria Giustina</creatorcontrib><creatorcontrib>Becker, Nadine</creatorcontrib><creatorcontrib>Friis, Søren</creatorcontrib><creatorcontrib>Rapedius, Markus</creatorcontrib><creatorcontrib>Goetze, Tom A.</creatorcontrib><creatorcontrib>Strassmaier, Tim</creatorcontrib><creatorcontrib>Okeyo, George</creatorcontrib><creatorcontrib>Kramer, James</creatorcontrib><creatorcontrib>Kuryshev, Yuri</creatorcontrib><creatorcontrib>Wu, Caiyun</creatorcontrib><creatorcontrib>Himmel, Herbert</creatorcontrib><creatorcontrib>Mirams, Gary R.</creatorcontrib><creatorcontrib>Strauss, David G.</creatorcontrib><creatorcontrib>Bardenet, Rémi</creatorcontrib><creatorcontrib>Li, Zhihua</creatorcontrib><creatorcontrib>Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><title>A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm</title><title>Toxicology and applied pharmacology</title><addtitle>Toxicol Appl Pharmacol</addtitle><description>hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment. •hERG potency/safety margin is a widely used nonclinical cardiac safety strategy.•A new regulatory paradigm promotes the integration of nonclinical and clinical data.•Lack of uncertainty quantification hindered using hERG potency in the new paradigm.•A systematic method was established to address this limitation.•Analysis supports using different safety margin thresholds in different context.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Bayes Theorem</subject><subject>Cellular Biology</subject><subject>Computer Simulation</subject><subject>ERG1 Potassium Channel - antagonists &amp; inhibitors</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Patch-Clamp Techniques</subject><subject>Pharmacology &amp; Pharmacy</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Risk Assessment - methods</subject><subject>Safety</subject><subject>Statistics</subject><subject>Torsades de Pointes - chemically induced</subject><subject>Torsades de Pointes - physiopathology</subject><subject>Toxicology</subject><issn>0041-008X</issn><issn>1096-0333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAQhUVpaTZJ_0APRfTWg7cj2ZJtKIUlpElhIRBayE3Ikryr7VoykrLF_74yTkPbQ09CM9883sxD6C2BNQHCPx7WScpxTYHmAqlaTl6gFYGWF1CW5Uu0AqhIAdA8nKHzGA8A0FYVeY3OSkqhLTlboWGD4xSTGWSyCscUZDK7Cfc-YBOTnctuh_fX9ze4O3r1A48-GacmLJ3GNkVsh_FoVca8yx-HJXbmJ1YyaCuzoOxNmvAog9R2N1yiV708RvPm6b1A379cf7u6LbZ3N1-vNttCMcJT0RMGFbC6JbJtKKey11UHVQMNKFZX0LdgGsa57uqSMdXWJWjWd71hXYY1KS_Q50V3fOwGo5VxebGjGENeKEzCSyv-7ji7Fzt_EjXhHOo6C7xfBHw-gojKJqP2yjtnVBIkI5xChj4s0P4f7dvNVsw1oE1dNw0_zY7owqrgYwymfx4gIOY0xUHMaYo5TbGkmYfe_bnG88jv-DLwaQFMPubJmjBbzfEYbcPsVHv7P_1fYcexHw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ridder, Bradley J.</creator><creator>Leishman, Derek J.</creator><creator>Bridgland-Taylor, Matthew</creator><creator>Samieegohar, Mohammadreza</creator><creator>Han, Xiaomei</creator><creator>Wu, Wendy W.</creator><creator>Randolph, Aaron</creator><creator>Tran, Phu</creator><creator>Sheng, Jiansong</creator><creator>Danker, Timm</creator><creator>Lindqvist, Anders</creator><creator>Konrad, Daniel</creator><creator>Hebeisen, Simon</creator><creator>Polonchuk, Liudmila</creator><creator>Gissinger, Evgenia</creator><creator>Renganathan, Muthukrishnan</creator><creator>Koci, Bryan</creator><creator>Wei, Haiyang</creator><creator>Fan, Jingsong</creator><creator>Levesque, Paul</creator><creator>Kwagh, Jae</creator><creator>Imredy, John</creator><creator>Zhai, Jin</creator><creator>Rogers, Marc</creator><creator>Humphries, Edward</creator><creator>Kirby, Robert</creator><creator>Stoelzle-Feix, Sonja</creator><creator>Brinkwirth, Nina</creator><creator>Rotordam, Maria Giustina</creator><creator>Becker, Nadine</creator><creator>Friis, Søren</creator><creator>Rapedius, Markus</creator><creator>Goetze, Tom A.</creator><creator>Strassmaier, Tim</creator><creator>Okeyo, George</creator><creator>Kramer, James</creator><creator>Kuryshev, Yuri</creator><creator>Wu, Caiyun</creator><creator>Himmel, Herbert</creator><creator>Mirams, Gary R.</creator><creator>Strauss, David G.</creator><creator>Bardenet, Rémi</creator><creator>Li, Zhihua</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1366-3634</orcidid><orcidid>https://orcid.org/0000-0002-2772-0839</orcidid><orcidid>https://orcid.org/0000-0002-1094-9493</orcidid><orcidid>https://orcid.org/0000000213663634</orcidid><orcidid>https://orcid.org/0000000227720839</orcidid></search><sort><creationdate>20200501</creationdate><title>A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm</title><author>Ridder, Bradley J. ; Leishman, Derek J. ; Bridgland-Taylor, Matthew ; Samieegohar, Mohammadreza ; Han, Xiaomei ; Wu, Wendy W. ; Randolph, Aaron ; Tran, Phu ; Sheng, Jiansong ; Danker, Timm ; Lindqvist, Anders ; Konrad, Daniel ; Hebeisen, Simon ; Polonchuk, Liudmila ; Gissinger, Evgenia ; Renganathan, Muthukrishnan ; Koci, Bryan ; Wei, Haiyang ; Fan, Jingsong ; Levesque, Paul ; Kwagh, Jae ; Imredy, John ; Zhai, Jin ; Rogers, Marc ; Humphries, Edward ; Kirby, Robert ; Stoelzle-Feix, Sonja ; Brinkwirth, Nina ; Rotordam, Maria Giustina ; Becker, Nadine ; Friis, Søren ; Rapedius, Markus ; Goetze, Tom A. ; Strassmaier, Tim ; Okeyo, George ; Kramer, James ; Kuryshev, Yuri ; Wu, Caiyun ; Himmel, Herbert ; Mirams, Gary R. ; Strauss, David G. ; Bardenet, Rémi ; Li, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-f150405791a98262afd4b048080c5740f90e8566db7355c9730d5fbfe5b62ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Bayes Theorem</topic><topic>Cellular Biology</topic><topic>Computer Simulation</topic><topic>ERG1 Potassium Channel - antagonists &amp; inhibitors</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Patch-Clamp Techniques</topic><topic>Pharmacology &amp; Pharmacy</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Risk Assessment - methods</topic><topic>Safety</topic><topic>Statistics</topic><topic>Torsades de Pointes - chemically induced</topic><topic>Torsades de Pointes - physiopathology</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ridder, Bradley J.</creatorcontrib><creatorcontrib>Leishman, Derek J.</creatorcontrib><creatorcontrib>Bridgland-Taylor, Matthew</creatorcontrib><creatorcontrib>Samieegohar, Mohammadreza</creatorcontrib><creatorcontrib>Han, Xiaomei</creatorcontrib><creatorcontrib>Wu, Wendy W.</creatorcontrib><creatorcontrib>Randolph, Aaron</creatorcontrib><creatorcontrib>Tran, Phu</creatorcontrib><creatorcontrib>Sheng, Jiansong</creatorcontrib><creatorcontrib>Danker, Timm</creatorcontrib><creatorcontrib>Lindqvist, Anders</creatorcontrib><creatorcontrib>Konrad, Daniel</creatorcontrib><creatorcontrib>Hebeisen, Simon</creatorcontrib><creatorcontrib>Polonchuk, Liudmila</creatorcontrib><creatorcontrib>Gissinger, Evgenia</creatorcontrib><creatorcontrib>Renganathan, Muthukrishnan</creatorcontrib><creatorcontrib>Koci, Bryan</creatorcontrib><creatorcontrib>Wei, Haiyang</creatorcontrib><creatorcontrib>Fan, Jingsong</creatorcontrib><creatorcontrib>Levesque, Paul</creatorcontrib><creatorcontrib>Kwagh, Jae</creatorcontrib><creatorcontrib>Imredy, John</creatorcontrib><creatorcontrib>Zhai, Jin</creatorcontrib><creatorcontrib>Rogers, Marc</creatorcontrib><creatorcontrib>Humphries, Edward</creatorcontrib><creatorcontrib>Kirby, Robert</creatorcontrib><creatorcontrib>Stoelzle-Feix, Sonja</creatorcontrib><creatorcontrib>Brinkwirth, Nina</creatorcontrib><creatorcontrib>Rotordam, Maria Giustina</creatorcontrib><creatorcontrib>Becker, Nadine</creatorcontrib><creatorcontrib>Friis, Søren</creatorcontrib><creatorcontrib>Rapedius, Markus</creatorcontrib><creatorcontrib>Goetze, Tom A.</creatorcontrib><creatorcontrib>Strassmaier, Tim</creatorcontrib><creatorcontrib>Okeyo, George</creatorcontrib><creatorcontrib>Kramer, James</creatorcontrib><creatorcontrib>Kuryshev, Yuri</creatorcontrib><creatorcontrib>Wu, Caiyun</creatorcontrib><creatorcontrib>Himmel, Herbert</creatorcontrib><creatorcontrib>Mirams, Gary R.</creatorcontrib><creatorcontrib>Strauss, David G.</creatorcontrib><creatorcontrib>Bardenet, Rémi</creatorcontrib><creatorcontrib>Li, Zhihua</creatorcontrib><creatorcontrib>Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Toxicology and applied pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ridder, Bradley J.</au><au>Leishman, Derek J.</au><au>Bridgland-Taylor, Matthew</au><au>Samieegohar, Mohammadreza</au><au>Han, Xiaomei</au><au>Wu, Wendy W.</au><au>Randolph, Aaron</au><au>Tran, Phu</au><au>Sheng, Jiansong</au><au>Danker, Timm</au><au>Lindqvist, Anders</au><au>Konrad, Daniel</au><au>Hebeisen, Simon</au><au>Polonchuk, Liudmila</au><au>Gissinger, Evgenia</au><au>Renganathan, Muthukrishnan</au><au>Koci, Bryan</au><au>Wei, Haiyang</au><au>Fan, Jingsong</au><au>Levesque, Paul</au><au>Kwagh, Jae</au><au>Imredy, John</au><au>Zhai, Jin</au><au>Rogers, Marc</au><au>Humphries, Edward</au><au>Kirby, Robert</au><au>Stoelzle-Feix, Sonja</au><au>Brinkwirth, Nina</au><au>Rotordam, Maria Giustina</au><au>Becker, Nadine</au><au>Friis, Søren</au><au>Rapedius, Markus</au><au>Goetze, Tom A.</au><au>Strassmaier, Tim</au><au>Okeyo, George</au><au>Kramer, James</au><au>Kuryshev, Yuri</au><au>Wu, Caiyun</au><au>Himmel, Herbert</au><au>Mirams, Gary R.</au><au>Strauss, David G.</au><au>Bardenet, Rémi</au><au>Li, Zhihua</au><aucorp>Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm</atitle><jtitle>Toxicology and applied pharmacology</jtitle><addtitle>Toxicol Appl Pharmacol</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>394</volume><issue>C</issue><spage>114961</spage><pages>114961-</pages><artnum>114961</artnum><issn>0041-008X</issn><eissn>1096-0333</eissn><abstract>hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment. •hERG potency/safety margin is a widely used nonclinical cardiac safety strategy.•A new regulatory paradigm promotes the integration of nonclinical and clinical data.•Lack of uncertainty quantification hindered using hERG potency in the new paradigm.•A systematic method was established to address this limitation.•Analysis supports using different safety margin thresholds in different context.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32209365</pmid><doi>10.1016/j.taap.2020.114961</doi><orcidid>https://orcid.org/0000-0002-1366-3634</orcidid><orcidid>https://orcid.org/0000-0002-2772-0839</orcidid><orcidid>https://orcid.org/0000-0002-1094-9493</orcidid><orcidid>https://orcid.org/0000000213663634</orcidid><orcidid>https://orcid.org/0000000227720839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0041-008X
ispartof Toxicology and applied pharmacology, 2020-05, Vol.394 (C), p.114961, Article 114961
issn 0041-008X
1096-0333
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166077
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects 60 APPLIED LIFE SCIENCES
Bayes Theorem
Cellular Biology
Computer Simulation
ERG1 Potassium Channel - antagonists & inhibitors
Humans
Life Sciences
Mathematics
Models, Biological
Patch-Clamp Techniques
Pharmacology & Pharmacy
Potassium Channel Blockers - pharmacology
Risk Assessment - methods
Safety
Statistics
Torsades de Pointes - chemically induced
Torsades de Pointes - physiopathology
Toxicology
title A systematic strategy for estimating hERG block potency and its implications in a new cardiac safety paradigm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20strategy%20for%20estimating%20hERG%20block%20potency%20and%20its%20implications%20in%20a%20new%20cardiac%20safety%20paradigm&rft.jtitle=Toxicology%20and%20applied%20pharmacology&rft.au=Ridder,%20Bradley%20J.&rft.aucorp=Oak%20Ridge%20Institute%20for%20Science%20and%20Education%20(ORISE),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-05-01&rft.volume=394&rft.issue=C&rft.spage=114961&rft.pages=114961-&rft.artnum=114961&rft.issn=0041-008X&rft.eissn=1096-0333&rft_id=info:doi/10.1016/j.taap.2020.114961&rft_dat=%3Celsevier_pubme%3ES0041008X20300855%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32209365&rft_els_id=S0041008X20300855&rfr_iscdi=true