Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria

Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drugresistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial pepti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-04, Vol.117 (15), p.8437-8448
Hauptverfasser: Starr, Charles G., Ghimire, Jenisha, Guha, Shantanu, Hoffmann, Joseph P., Wang, Yihui, Sun, Leisheng, Landreneau, Brooke N., Kolansky, Zachary D., Kilanowski-Doroh, Isabella M., Sammarco, Mimi C., Morici, Lisa A., Wimley, William C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8448
container_issue 15
container_start_page 8437
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Starr, Charles G.
Ghimire, Jenisha
Guha, Shantanu
Hoffmann, Joseph P.
Wang, Yihui
Sun, Leisheng
Landreneau, Brooke N.
Kolansky, Zachary D.
Kilanowski-Doroh, Isabella M.
Sammarco, Mimi C.
Morici, Lisa A.
Wimley, William C.
description Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drugresistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial peptides (AMPs) have long been considered a potentially promising, novel class of antibiotic, especially for wound protection and treatment to prevent the development of serious infections. Yet, despite thousands of known examples, AMPs have only infrequently proceeded as far as clinical trials, especially the chemically simple, linear examples. In part, this is due to impediments that often limit their applications in vivo. These can include low solubility, residual toxicity, susceptibility to proteolysis, and loss of activity due to host cell, tissue, and protein binding. Here we show how synthetic molecular evolution can be used to evolve potentially advantageous antimicrobial peptides that lack these impediments from parent peptides that have at least some of them. As an example of how the antibiotic discovery pipeline can be populated with more promising candidates, we evolved and optimized one family of linear AMPs into a new generation with high solubility, low cytotoxicity, potent broad-spectrum sterilizing activity against a panel of grampositive and gram-negative ESKAPE pathogens, and antibiofilm activity against gram-positive and gram-negative biofilms. The evolved peptides have these activities in vitro even in the presence of concentrated host cells and also in vivo in the complex, cell- and protein-rich environment of a purulent animal wound model infected with drug-resistant bacteria.
doi_str_mv 10.1073/pnas.1918427117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7165445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26930897</jstor_id><sourcerecordid>26930897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-931a56b1e29e8361748e83366e085b62098528ce406ac92d1b5077e212f627c33</originalsourceid><addsrcrecordid>eNpdkTtvFDEUhUcIRJZATQWyRJMik_g1HruJhKLwkCJRALXl8d7Z9cpjD7ZnpfwDfjZebVge1S3ud859nKZ5TfAVwT27noPJV0QRyWlPSP-kWRGsSCu4wk-bFca0b2uLnzUvct5hjFUn8fPmjFHKiVTdqvn59SGULRRn0RQ92MWbhGAf_VJcDCiOaBtzQRa8b22cZlPc4OESmVDc5GyKgzMezTAXt4aMYBzBFrcHZDbGhapcp2XTJsgul6q5RIOLo_NTO8Y0ubBBg7EFkjMvm2ej8RlePdbz5vuHu2-3n9r7Lx8_376_by3nrLSKEdOJgQBVIJkgPZe1MiEAy24QFCvZUWmBY2GsomsydLjvgRI6Ctpbxs6bm6PvvAwTrC2EkozXc3KTSQ86Gqf_7QS31Zu41z0RHeddNbh4NEjxxwK56Mnlw39MgLhkTZmsk1TPREXf_Yfu4pJCPa9SimFJahCVuj5S9Zs5JxhPyxCsDynrQ8r6T8pV8fbvG07871gr8OYI7HKJ6dSn4jC0rvYLrJav2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393081322</pqid></control><display><type>article</type><title>Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Starr, Charles G. ; Ghimire, Jenisha ; Guha, Shantanu ; Hoffmann, Joseph P. ; Wang, Yihui ; Sun, Leisheng ; Landreneau, Brooke N. ; Kolansky, Zachary D. ; Kilanowski-Doroh, Isabella M. ; Sammarco, Mimi C. ; Morici, Lisa A. ; Wimley, William C.</creator><creatorcontrib>Starr, Charles G. ; Ghimire, Jenisha ; Guha, Shantanu ; Hoffmann, Joseph P. ; Wang, Yihui ; Sun, Leisheng ; Landreneau, Brooke N. ; Kolansky, Zachary D. ; Kilanowski-Doroh, Isabella M. ; Sammarco, Mimi C. ; Morici, Lisa A. ; Wimley, William C.</creatorcontrib><description>Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drugresistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial peptides (AMPs) have long been considered a potentially promising, novel class of antibiotic, especially for wound protection and treatment to prevent the development of serious infections. Yet, despite thousands of known examples, AMPs have only infrequently proceeded as far as clinical trials, especially the chemically simple, linear examples. In part, this is due to impediments that often limit their applications in vivo. These can include low solubility, residual toxicity, susceptibility to proteolysis, and loss of activity due to host cell, tissue, and protein binding. Here we show how synthetic molecular evolution can be used to evolve potentially advantageous antimicrobial peptides that lack these impediments from parent peptides that have at least some of them. As an example of how the antibiotic discovery pipeline can be populated with more promising candidates, we evolved and optimized one family of linear AMPs into a new generation with high solubility, low cytotoxicity, potent broad-spectrum sterilizing activity against a panel of grampositive and gram-negative ESKAPE pathogens, and antibiofilm activity against gram-positive and gram-negative biofilms. The evolved peptides have these activities in vitro even in the presence of concentrated host cells and also in vivo in the complex, cell- and protein-rich environment of a purulent animal wound model infected with drug-resistant bacteria.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1918427117</identifier><identifier>PMID: 32241895</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial peptides ; Bacteria ; Bacterial diseases ; Biocompatibility ; Biofilms ; Biological Sciences ; Clinical trials ; Cytotoxicity ; Drug resistance ; Evolution ; Infections ; Molecular evolution ; Peptides ; Proteins ; Proteolysis ; Solubility ; Toxicity ; Wounds</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-04, Vol.117 (15), p.8437-8448</ispartof><rights>Copyright National Academy of Sciences Apr 14, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-931a56b1e29e8361748e83366e085b62098528ce406ac92d1b5077e212f627c33</citedby><cites>FETCH-LOGICAL-c443t-931a56b1e29e8361748e83366e085b62098528ce406ac92d1b5077e212f627c33</cites><orcidid>0000-0002-3097-4194 ; 0000-0003-0358-1421 ; 0000-0003-4998-8171 ; 0000-0002-4799-4941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26930897$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26930897$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32241895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Starr, Charles G.</creatorcontrib><creatorcontrib>Ghimire, Jenisha</creatorcontrib><creatorcontrib>Guha, Shantanu</creatorcontrib><creatorcontrib>Hoffmann, Joseph P.</creatorcontrib><creatorcontrib>Wang, Yihui</creatorcontrib><creatorcontrib>Sun, Leisheng</creatorcontrib><creatorcontrib>Landreneau, Brooke N.</creatorcontrib><creatorcontrib>Kolansky, Zachary D.</creatorcontrib><creatorcontrib>Kilanowski-Doroh, Isabella M.</creatorcontrib><creatorcontrib>Sammarco, Mimi C.</creatorcontrib><creatorcontrib>Morici, Lisa A.</creatorcontrib><creatorcontrib>Wimley, William C.</creatorcontrib><title>Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drugresistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial peptides (AMPs) have long been considered a potentially promising, novel class of antibiotic, especially for wound protection and treatment to prevent the development of serious infections. Yet, despite thousands of known examples, AMPs have only infrequently proceeded as far as clinical trials, especially the chemically simple, linear examples. In part, this is due to impediments that often limit their applications in vivo. These can include low solubility, residual toxicity, susceptibility to proteolysis, and loss of activity due to host cell, tissue, and protein binding. Here we show how synthetic molecular evolution can be used to evolve potentially advantageous antimicrobial peptides that lack these impediments from parent peptides that have at least some of them. As an example of how the antibiotic discovery pipeline can be populated with more promising candidates, we evolved and optimized one family of linear AMPs into a new generation with high solubility, low cytotoxicity, potent broad-spectrum sterilizing activity against a panel of grampositive and gram-negative ESKAPE pathogens, and antibiofilm activity against gram-positive and gram-negative biofilms. The evolved peptides have these activities in vitro even in the presence of concentrated host cells and also in vivo in the complex, cell- and protein-rich environment of a purulent animal wound model infected with drug-resistant bacteria.</description><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial peptides</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Biocompatibility</subject><subject>Biofilms</subject><subject>Biological Sciences</subject><subject>Clinical trials</subject><subject>Cytotoxicity</subject><subject>Drug resistance</subject><subject>Evolution</subject><subject>Infections</subject><subject>Molecular evolution</subject><subject>Peptides</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Solubility</subject><subject>Toxicity</subject><subject>Wounds</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkTtvFDEUhUcIRJZATQWyRJMik_g1HruJhKLwkCJRALXl8d7Z9cpjD7ZnpfwDfjZebVge1S3ud859nKZ5TfAVwT27noPJV0QRyWlPSP-kWRGsSCu4wk-bFca0b2uLnzUvct5hjFUn8fPmjFHKiVTdqvn59SGULRRn0RQ92MWbhGAf_VJcDCiOaBtzQRa8b22cZlPc4OESmVDc5GyKgzMezTAXt4aMYBzBFrcHZDbGhapcp2XTJsgul6q5RIOLo_NTO8Y0ubBBg7EFkjMvm2ej8RlePdbz5vuHu2-3n9r7Lx8_376_by3nrLSKEdOJgQBVIJkgPZe1MiEAy24QFCvZUWmBY2GsomsydLjvgRI6Ctpbxs6bm6PvvAwTrC2EkozXc3KTSQ86Gqf_7QS31Zu41z0RHeddNbh4NEjxxwK56Mnlw39MgLhkTZmsk1TPREXf_Yfu4pJCPa9SimFJahCVuj5S9Zs5JxhPyxCsDynrQ8r6T8pV8fbvG07871gr8OYI7HKJ6dSn4jC0rvYLrJav2Q</recordid><startdate>20200414</startdate><enddate>20200414</enddate><creator>Starr, Charles G.</creator><creator>Ghimire, Jenisha</creator><creator>Guha, Shantanu</creator><creator>Hoffmann, Joseph P.</creator><creator>Wang, Yihui</creator><creator>Sun, Leisheng</creator><creator>Landreneau, Brooke N.</creator><creator>Kolansky, Zachary D.</creator><creator>Kilanowski-Doroh, Isabella M.</creator><creator>Sammarco, Mimi C.</creator><creator>Morici, Lisa A.</creator><creator>Wimley, William C.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3097-4194</orcidid><orcidid>https://orcid.org/0000-0003-0358-1421</orcidid><orcidid>https://orcid.org/0000-0003-4998-8171</orcidid><orcidid>https://orcid.org/0000-0002-4799-4941</orcidid></search><sort><creationdate>20200414</creationdate><title>Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria</title><author>Starr, Charles G. ; Ghimire, Jenisha ; Guha, Shantanu ; Hoffmann, Joseph P. ; Wang, Yihui ; Sun, Leisheng ; Landreneau, Brooke N. ; Kolansky, Zachary D. ; Kilanowski-Doroh, Isabella M. ; Sammarco, Mimi C. ; Morici, Lisa A. ; Wimley, William C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-931a56b1e29e8361748e83366e085b62098528ce406ac92d1b5077e212f627c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial peptides</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Biocompatibility</topic><topic>Biofilms</topic><topic>Biological Sciences</topic><topic>Clinical trials</topic><topic>Cytotoxicity</topic><topic>Drug resistance</topic><topic>Evolution</topic><topic>Infections</topic><topic>Molecular evolution</topic><topic>Peptides</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Solubility</topic><topic>Toxicity</topic><topic>Wounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starr, Charles G.</creatorcontrib><creatorcontrib>Ghimire, Jenisha</creatorcontrib><creatorcontrib>Guha, Shantanu</creatorcontrib><creatorcontrib>Hoffmann, Joseph P.</creatorcontrib><creatorcontrib>Wang, Yihui</creatorcontrib><creatorcontrib>Sun, Leisheng</creatorcontrib><creatorcontrib>Landreneau, Brooke N.</creatorcontrib><creatorcontrib>Kolansky, Zachary D.</creatorcontrib><creatorcontrib>Kilanowski-Doroh, Isabella M.</creatorcontrib><creatorcontrib>Sammarco, Mimi C.</creatorcontrib><creatorcontrib>Morici, Lisa A.</creatorcontrib><creatorcontrib>Wimley, William C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starr, Charles G.</au><au>Ghimire, Jenisha</au><au>Guha, Shantanu</au><au>Hoffmann, Joseph P.</au><au>Wang, Yihui</au><au>Sun, Leisheng</au><au>Landreneau, Brooke N.</au><au>Kolansky, Zachary D.</au><au>Kilanowski-Doroh, Isabella M.</au><au>Sammarco, Mimi C.</au><au>Morici, Lisa A.</au><au>Wimley, William C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-04-14</date><risdate>2020</risdate><volume>117</volume><issue>15</issue><spage>8437</spage><epage>8448</epage><pages>8437-8448</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drugresistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial peptides (AMPs) have long been considered a potentially promising, novel class of antibiotic, especially for wound protection and treatment to prevent the development of serious infections. Yet, despite thousands of known examples, AMPs have only infrequently proceeded as far as clinical trials, especially the chemically simple, linear examples. In part, this is due to impediments that often limit their applications in vivo. These can include low solubility, residual toxicity, susceptibility to proteolysis, and loss of activity due to host cell, tissue, and protein binding. Here we show how synthetic molecular evolution can be used to evolve potentially advantageous antimicrobial peptides that lack these impediments from parent peptides that have at least some of them. As an example of how the antibiotic discovery pipeline can be populated with more promising candidates, we evolved and optimized one family of linear AMPs into a new generation with high solubility, low cytotoxicity, potent broad-spectrum sterilizing activity against a panel of grampositive and gram-negative ESKAPE pathogens, and antibiofilm activity against gram-positive and gram-negative biofilms. The evolved peptides have these activities in vitro even in the presence of concentrated host cells and also in vivo in the complex, cell- and protein-rich environment of a purulent animal wound model infected with drug-resistant bacteria.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32241895</pmid><doi>10.1073/pnas.1918427117</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3097-4194</orcidid><orcidid>https://orcid.org/0000-0003-0358-1421</orcidid><orcidid>https://orcid.org/0000-0003-4998-8171</orcidid><orcidid>https://orcid.org/0000-0002-4799-4941</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-04, Vol.117 (15), p.8437-8448
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7165445
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antibiotics
Antiinfectives and antibacterials
Antimicrobial peptides
Bacteria
Bacterial diseases
Biocompatibility
Biofilms
Biological Sciences
Clinical trials
Cytotoxicity
Drug resistance
Evolution
Infections
Molecular evolution
Peptides
Proteins
Proteolysis
Solubility
Toxicity
Wounds
title Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20molecular%20evolution%20of%20host%20cell-compatible,%20antimicrobial%20peptides%20effective%20against%20drug-resistant,%20biofilm-forming%20bacteria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Starr,%20Charles%20G.&rft.date=2020-04-14&rft.volume=117&rft.issue=15&rft.spage=8437&rft.epage=8448&rft.pages=8437-8448&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1918427117&rft_dat=%3Cjstor_pubme%3E26930897%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393081322&rft_id=info:pmid/32241895&rft_jstor_id=26930897&rfr_iscdi=true