A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment
The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical i...
Gespeichert in:
Veröffentlicht in: | Journal of digital imaging 2020-04, Vol.33 (2), p.516-530 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | 2 |
container_start_page | 516 |
container_title | Journal of digital imaging |
container_volume | 33 |
creator | Sharma, Urvashi Sood, Meenakshi Puthooran, Emjee |
description | The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical images while preserving diagnostic information. The proposed algorithm uses a resolution and modality independent threshold-based predictor, optimal quantization (
q
) level, and adaptive block size encoding. The proposed method employs resolution independent gradient edge detector (RIGED) for removing inter-pixel redundancy and block adaptive arithmetic encoding (BAAE) is used after quantization to remove coding redundancy. Quantizer with an optimum
q
level is used to implement the proposed method for high compression efficiency and for the better quality of the recovered images. The proposed method is implemented on volumetric 8-bit and 16-bit standard medical images and also validated on real time 16-bit-depth images collected from government hospitals. The results show the proposed algorithm yields a high coding performance with BPP of 1.37 and produces high peak signal-to-noise ratio (PSNR) of 51.35 dB for 8-bit-depth image dataset as compared with other near-lossless compression. The average BPP values of 3.411 and 2.609 are obtained by the proposed technique for 16-bit standard medical image dataset and real-time medical dataset respectively with maintained image quality. The improved near-lossless predictive coding technique achieves high compression ratio without losing diagnostic information from the image. |
doi_str_mv | 10.1007/s10278-019-00283-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7165212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310292014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d8b89c573355eac7ef46322e980d4afe59dfaa219246c708967eb7a671bfbce3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EoreFP8ACWWLDxuBHEtsbpHChUOkCQnTBznKcSeqS2Ld2Uqn_HsMt5bFgZUvzzZk5cxB6wugLRql8mRnlUhHKNKGUK0HEPbRhDVNEcvn1PtpQpSVhSukjdJzzJaVM1rJ6iI4Ea2pdK7VBqcWvp-i-4ba3-8VfA_4INpFdzHmCnPE2zvtUPj4G3E5jTH65mPEQE_4AvXd2wmezHQF_gasVgoOMbejxG2_HEPPiHf682skvN7jNucjMEJZH6MFgpwyPb98TdH769nz7nuw-vTvbtjviKlktpFed0q6WQtQ1WCdhqBrBOWhF-8oOUOt-sJYzzavGyWK1kdBJ20jWDZ0DcYJeHWT3azdD78rkZCezT3626cZE683fleAvzBivjSzH4YwXgee3AikWc3kxs88OpskGiGs2XJT7a05ZVdBn_6CXcU2huCuUZqxqWM0KxQ-US-W8CYa7ZRg1PxI1h0RNSdT8TNSI0vT0Txt3Lb8iLIA4ALmUwgjp9-z_yH4H3pSuJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391146151</pqid></control><display><type>article</type><title>A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sharma, Urvashi ; Sood, Meenakshi ; Puthooran, Emjee</creator><creatorcontrib>Sharma, Urvashi ; Sood, Meenakshi ; Puthooran, Emjee</creatorcontrib><description>The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical images while preserving diagnostic information. The proposed algorithm uses a resolution and modality independent threshold-based predictor, optimal quantization (
q
) level, and adaptive block size encoding. The proposed method employs resolution independent gradient edge detector (RIGED) for removing inter-pixel redundancy and block adaptive arithmetic encoding (BAAE) is used after quantization to remove coding redundancy. Quantizer with an optimum
q
level is used to implement the proposed method for high compression efficiency and for the better quality of the recovered images. The proposed method is implemented on volumetric 8-bit and 16-bit standard medical images and also validated on real time 16-bit-depth images collected from government hospitals. The results show the proposed algorithm yields a high coding performance with BPP of 1.37 and produces high peak signal-to-noise ratio (PSNR) of 51.35 dB for 8-bit-depth image dataset as compared with other near-lossless compression. The average BPP values of 3.411 and 2.609 are obtained by the proposed technique for 16-bit standard medical image dataset and real-time medical dataset respectively with maintained image quality. The improved near-lossless predictive coding technique achieves high compression ratio without losing diagnostic information from the image.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-019-00283-3</identifier><identifier>PMID: 31659588</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptive algorithms ; Algorithms ; Coding ; Compression ; Compression ratio ; Compression tests ; Datasets ; Diagnostic systems ; Image compression ; Image quality ; Imaging ; Measurement ; Medical diagnosis ; Medical imaging ; Medicine ; Medicine & Public Health ; Noise levels ; Optimization ; Pixels ; Quality assessment ; Quality control ; Radiology ; Real time ; Redundancy ; Signal to noise ratio</subject><ispartof>Journal of digital imaging, 2020-04, Vol.33 (2), p.516-530</ispartof><rights>Society for Imaging Informatics in Medicine 2019</rights><rights>Society for Imaging Informatics in Medicine 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d8b89c573355eac7ef46322e980d4afe59dfaa219246c708967eb7a671bfbce3</citedby><cites>FETCH-LOGICAL-c474t-d8b89c573355eac7ef46322e980d4afe59dfaa219246c708967eb7a671bfbce3</cites><orcidid>0000-0003-2433-5676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165212/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165212/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31659588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Urvashi</creatorcontrib><creatorcontrib>Sood, Meenakshi</creatorcontrib><creatorcontrib>Puthooran, Emjee</creatorcontrib><title>A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical images while preserving diagnostic information. The proposed algorithm uses a resolution and modality independent threshold-based predictor, optimal quantization (
q
) level, and adaptive block size encoding. The proposed method employs resolution independent gradient edge detector (RIGED) for removing inter-pixel redundancy and block adaptive arithmetic encoding (BAAE) is used after quantization to remove coding redundancy. Quantizer with an optimum
q
level is used to implement the proposed method for high compression efficiency and for the better quality of the recovered images. The proposed method is implemented on volumetric 8-bit and 16-bit standard medical images and also validated on real time 16-bit-depth images collected from government hospitals. The results show the proposed algorithm yields a high coding performance with BPP of 1.37 and produces high peak signal-to-noise ratio (PSNR) of 51.35 dB for 8-bit-depth image dataset as compared with other near-lossless compression. The average BPP values of 3.411 and 2.609 are obtained by the proposed technique for 16-bit standard medical image dataset and real-time medical dataset respectively with maintained image quality. The improved near-lossless predictive coding technique achieves high compression ratio without losing diagnostic information from the image.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Coding</subject><subject>Compression</subject><subject>Compression ratio</subject><subject>Compression tests</subject><subject>Datasets</subject><subject>Diagnostic systems</subject><subject>Image compression</subject><subject>Image quality</subject><subject>Imaging</subject><subject>Measurement</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Noise levels</subject><subject>Optimization</subject><subject>Pixels</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Radiology</subject><subject>Real time</subject><subject>Redundancy</subject><subject>Signal to noise ratio</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtv1TAQhS0EoreFP8ACWWLDxuBHEtsbpHChUOkCQnTBznKcSeqS2Ld2Uqn_HsMt5bFgZUvzzZk5cxB6wugLRql8mRnlUhHKNKGUK0HEPbRhDVNEcvn1PtpQpSVhSukjdJzzJaVM1rJ6iI4Ea2pdK7VBqcWvp-i-4ba3-8VfA_4INpFdzHmCnPE2zvtUPj4G3E5jTH65mPEQE_4AvXd2wmezHQF_gasVgoOMbejxG2_HEPPiHf682skvN7jNucjMEJZH6MFgpwyPb98TdH769nz7nuw-vTvbtjviKlktpFed0q6WQtQ1WCdhqBrBOWhF-8oOUOt-sJYzzavGyWK1kdBJ20jWDZ0DcYJeHWT3azdD78rkZCezT3626cZE683fleAvzBivjSzH4YwXgee3AikWc3kxs88OpskGiGs2XJT7a05ZVdBn_6CXcU2huCuUZqxqWM0KxQ-US-W8CYa7ZRg1PxI1h0RNSdT8TNSI0vT0Txt3Lb8iLIA4ALmUwgjp9-z_yH4H3pSuJg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Sharma, Urvashi</creator><creator>Sood, Meenakshi</creator><creator>Puthooran, Emjee</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2433-5676</orcidid></search><sort><creationdate>20200401</creationdate><title>A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment</title><author>Sharma, Urvashi ; Sood, Meenakshi ; Puthooran, Emjee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d8b89c573355eac7ef46322e980d4afe59dfaa219246c708967eb7a671bfbce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Coding</topic><topic>Compression</topic><topic>Compression ratio</topic><topic>Compression tests</topic><topic>Datasets</topic><topic>Diagnostic systems</topic><topic>Image compression</topic><topic>Image quality</topic><topic>Imaging</topic><topic>Measurement</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Noise levels</topic><topic>Optimization</topic><topic>Pixels</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Radiology</topic><topic>Real time</topic><topic>Redundancy</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Urvashi</creatorcontrib><creatorcontrib>Sood, Meenakshi</creatorcontrib><creatorcontrib>Puthooran, Emjee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Urvashi</au><au>Sood, Meenakshi</au><au>Puthooran, Emjee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>33</volume><issue>2</issue><spage>516</spage><epage>530</epage><pages>516-530</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical images while preserving diagnostic information. The proposed algorithm uses a resolution and modality independent threshold-based predictor, optimal quantization (
q
) level, and adaptive block size encoding. The proposed method employs resolution independent gradient edge detector (RIGED) for removing inter-pixel redundancy and block adaptive arithmetic encoding (BAAE) is used after quantization to remove coding redundancy. Quantizer with an optimum
q
level is used to implement the proposed method for high compression efficiency and for the better quality of the recovered images. The proposed method is implemented on volumetric 8-bit and 16-bit standard medical images and also validated on real time 16-bit-depth images collected from government hospitals. The results show the proposed algorithm yields a high coding performance with BPP of 1.37 and produces high peak signal-to-noise ratio (PSNR) of 51.35 dB for 8-bit-depth image dataset as compared with other near-lossless compression. The average BPP values of 3.411 and 2.609 are obtained by the proposed technique for 16-bit standard medical image dataset and real-time medical dataset respectively with maintained image quality. The improved near-lossless predictive coding technique achieves high compression ratio without losing diagnostic information from the image.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31659588</pmid><doi>10.1007/s10278-019-00283-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2433-5676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-1889 |
ispartof | Journal of digital imaging, 2020-04, Vol.33 (2), p.516-530 |
issn | 0897-1889 1618-727X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7165212 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adaptive algorithms Algorithms Coding Compression Compression ratio Compression tests Datasets Diagnostic systems Image compression Image quality Imaging Measurement Medical diagnosis Medical imaging Medicine Medicine & Public Health Noise levels Optimization Pixels Quality assessment Quality control Radiology Real time Redundancy Signal to noise ratio |
title | A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Block%20Adaptive%20Near-Lossless%20Compression%20Algorithm%20for%20Medical%20Image%20Sequences%20and%20Diagnostic%20Quality%20Assessment&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Sharma,%20Urvashi&rft.date=2020-04-01&rft.volume=33&rft.issue=2&rft.spage=516&rft.epage=530&rft.pages=516-530&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-019-00283-3&rft_dat=%3Cproquest_pubme%3E2310292014%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391146151&rft_id=info:pmid/31659588&rfr_iscdi=true |