A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment

The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2020-04, Vol.33 (2), p.516-530
Hauptverfasser: Sharma, Urvashi, Sood, Meenakshi, Puthooran, Emjee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530
container_issue 2
container_start_page 516
container_title Journal of digital imaging
container_volume 33
creator Sharma, Urvashi
Sood, Meenakshi
Puthooran, Emjee
description The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical images while preserving diagnostic information. The proposed algorithm uses a resolution and modality independent threshold-based predictor, optimal quantization ( q ) level, and adaptive block size encoding. The proposed method employs resolution independent gradient edge detector (RIGED) for removing inter-pixel redundancy and block adaptive arithmetic encoding (BAAE) is used after quantization to remove coding redundancy. Quantizer with an optimum q level is used to implement the proposed method for high compression efficiency and for the better quality of the recovered images. The proposed method is implemented on volumetric 8-bit and 16-bit standard medical images and also validated on real time 16-bit-depth images collected from government hospitals. The results show the proposed algorithm yields a high coding performance with BPP of 1.37 and produces high peak signal-to-noise ratio (PSNR) of 51.35 dB for 8-bit-depth image dataset as compared with other near-lossless compression. The average BPP values of 3.411 and 2.609 are obtained by the proposed technique for 16-bit standard medical image dataset and real-time medical dataset respectively with maintained image quality. The improved near-lossless predictive coding technique achieves high compression ratio without losing diagnostic information from the image.
doi_str_mv 10.1007/s10278-019-00283-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7165212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310292014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d8b89c573355eac7ef46322e980d4afe59dfaa219246c708967eb7a671bfbce3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EoreFP8ACWWLDxuBHEtsbpHChUOkCQnTBznKcSeqS2Ld2Uqn_HsMt5bFgZUvzzZk5cxB6wugLRql8mRnlUhHKNKGUK0HEPbRhDVNEcvn1PtpQpSVhSukjdJzzJaVM1rJ6iI4Ea2pdK7VBqcWvp-i-4ba3-8VfA_4INpFdzHmCnPE2zvtUPj4G3E5jTH65mPEQE_4AvXd2wmezHQF_gasVgoOMbejxG2_HEPPiHf682skvN7jNucjMEJZH6MFgpwyPb98TdH769nz7nuw-vTvbtjviKlktpFed0q6WQtQ1WCdhqBrBOWhF-8oOUOt-sJYzzavGyWK1kdBJ20jWDZ0DcYJeHWT3azdD78rkZCezT3626cZE683fleAvzBivjSzH4YwXgee3AikWc3kxs88OpskGiGs2XJT7a05ZVdBn_6CXcU2huCuUZqxqWM0KxQ-US-W8CYa7ZRg1PxI1h0RNSdT8TNSI0vT0Txt3Lb8iLIA4ALmUwgjp9-z_yH4H3pSuJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391146151</pqid></control><display><type>article</type><title>A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sharma, Urvashi ; Sood, Meenakshi ; Puthooran, Emjee</creator><creatorcontrib>Sharma, Urvashi ; Sood, Meenakshi ; Puthooran, Emjee</creatorcontrib><description>The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical images while preserving diagnostic information. The proposed algorithm uses a resolution and modality independent threshold-based predictor, optimal quantization ( q ) level, and adaptive block size encoding. The proposed method employs resolution independent gradient edge detector (RIGED) for removing inter-pixel redundancy and block adaptive arithmetic encoding (BAAE) is used after quantization to remove coding redundancy. Quantizer with an optimum q level is used to implement the proposed method for high compression efficiency and for the better quality of the recovered images. The proposed method is implemented on volumetric 8-bit and 16-bit standard medical images and also validated on real time 16-bit-depth images collected from government hospitals. The results show the proposed algorithm yields a high coding performance with BPP of 1.37 and produces high peak signal-to-noise ratio (PSNR) of 51.35 dB for 8-bit-depth image dataset as compared with other near-lossless compression. The average BPP values of 3.411 and 2.609 are obtained by the proposed technique for 16-bit standard medical image dataset and real-time medical dataset respectively with maintained image quality. The improved near-lossless predictive coding technique achieves high compression ratio without losing diagnostic information from the image.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-019-00283-3</identifier><identifier>PMID: 31659588</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptive algorithms ; Algorithms ; Coding ; Compression ; Compression ratio ; Compression tests ; Datasets ; Diagnostic systems ; Image compression ; Image quality ; Imaging ; Measurement ; Medical diagnosis ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Noise levels ; Optimization ; Pixels ; Quality assessment ; Quality control ; Radiology ; Real time ; Redundancy ; Signal to noise ratio</subject><ispartof>Journal of digital imaging, 2020-04, Vol.33 (2), p.516-530</ispartof><rights>Society for Imaging Informatics in Medicine 2019</rights><rights>Society for Imaging Informatics in Medicine 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d8b89c573355eac7ef46322e980d4afe59dfaa219246c708967eb7a671bfbce3</citedby><cites>FETCH-LOGICAL-c474t-d8b89c573355eac7ef46322e980d4afe59dfaa219246c708967eb7a671bfbce3</cites><orcidid>0000-0003-2433-5676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165212/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165212/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31659588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Urvashi</creatorcontrib><creatorcontrib>Sood, Meenakshi</creatorcontrib><creatorcontrib>Puthooran, Emjee</creatorcontrib><title>A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical images while preserving diagnostic information. The proposed algorithm uses a resolution and modality independent threshold-based predictor, optimal quantization ( q ) level, and adaptive block size encoding. The proposed method employs resolution independent gradient edge detector (RIGED) for removing inter-pixel redundancy and block adaptive arithmetic encoding (BAAE) is used after quantization to remove coding redundancy. Quantizer with an optimum q level is used to implement the proposed method for high compression efficiency and for the better quality of the recovered images. The proposed method is implemented on volumetric 8-bit and 16-bit standard medical images and also validated on real time 16-bit-depth images collected from government hospitals. The results show the proposed algorithm yields a high coding performance with BPP of 1.37 and produces high peak signal-to-noise ratio (PSNR) of 51.35 dB for 8-bit-depth image dataset as compared with other near-lossless compression. The average BPP values of 3.411 and 2.609 are obtained by the proposed technique for 16-bit standard medical image dataset and real-time medical dataset respectively with maintained image quality. The improved near-lossless predictive coding technique achieves high compression ratio without losing diagnostic information from the image.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Coding</subject><subject>Compression</subject><subject>Compression ratio</subject><subject>Compression tests</subject><subject>Datasets</subject><subject>Diagnostic systems</subject><subject>Image compression</subject><subject>Image quality</subject><subject>Imaging</subject><subject>Measurement</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Noise levels</subject><subject>Optimization</subject><subject>Pixels</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>Radiology</subject><subject>Real time</subject><subject>Redundancy</subject><subject>Signal to noise ratio</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtv1TAQhS0EoreFP8ACWWLDxuBHEtsbpHChUOkCQnTBznKcSeqS2Ld2Uqn_HsMt5bFgZUvzzZk5cxB6wugLRql8mRnlUhHKNKGUK0HEPbRhDVNEcvn1PtpQpSVhSukjdJzzJaVM1rJ6iI4Ea2pdK7VBqcWvp-i-4ba3-8VfA_4INpFdzHmCnPE2zvtUPj4G3E5jTH65mPEQE_4AvXd2wmezHQF_gasVgoOMbejxG2_HEPPiHf682skvN7jNucjMEJZH6MFgpwyPb98TdH769nz7nuw-vTvbtjviKlktpFed0q6WQtQ1WCdhqBrBOWhF-8oOUOt-sJYzzavGyWK1kdBJ20jWDZ0DcYJeHWT3azdD78rkZCezT3626cZE683fleAvzBivjSzH4YwXgee3AikWc3kxs88OpskGiGs2XJT7a05ZVdBn_6CXcU2huCuUZqxqWM0KxQ-US-W8CYa7ZRg1PxI1h0RNSdT8TNSI0vT0Txt3Lb8iLIA4ALmUwgjp9-z_yH4H3pSuJg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Sharma, Urvashi</creator><creator>Sood, Meenakshi</creator><creator>Puthooran, Emjee</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2433-5676</orcidid></search><sort><creationdate>20200401</creationdate><title>A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment</title><author>Sharma, Urvashi ; Sood, Meenakshi ; Puthooran, Emjee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d8b89c573355eac7ef46322e980d4afe59dfaa219246c708967eb7a671bfbce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Coding</topic><topic>Compression</topic><topic>Compression ratio</topic><topic>Compression tests</topic><topic>Datasets</topic><topic>Diagnostic systems</topic><topic>Image compression</topic><topic>Image quality</topic><topic>Imaging</topic><topic>Measurement</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Noise levels</topic><topic>Optimization</topic><topic>Pixels</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>Radiology</topic><topic>Real time</topic><topic>Redundancy</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Urvashi</creatorcontrib><creatorcontrib>Sood, Meenakshi</creatorcontrib><creatorcontrib>Puthooran, Emjee</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Urvashi</au><au>Sood, Meenakshi</au><au>Puthooran, Emjee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>33</volume><issue>2</issue><spage>516</spage><epage>530</epage><pages>516-530</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>The near-lossless compression technique has better compression ratio than lossless compression technique while maintaining a maximum error limit for each pixel. It takes the advantage of both the lossy and lossless compression methods providing high compression ratio, which can be used for medical images while preserving diagnostic information. The proposed algorithm uses a resolution and modality independent threshold-based predictor, optimal quantization ( q ) level, and adaptive block size encoding. The proposed method employs resolution independent gradient edge detector (RIGED) for removing inter-pixel redundancy and block adaptive arithmetic encoding (BAAE) is used after quantization to remove coding redundancy. Quantizer with an optimum q level is used to implement the proposed method for high compression efficiency and for the better quality of the recovered images. The proposed method is implemented on volumetric 8-bit and 16-bit standard medical images and also validated on real time 16-bit-depth images collected from government hospitals. The results show the proposed algorithm yields a high coding performance with BPP of 1.37 and produces high peak signal-to-noise ratio (PSNR) of 51.35 dB for 8-bit-depth image dataset as compared with other near-lossless compression. The average BPP values of 3.411 and 2.609 are obtained by the proposed technique for 16-bit standard medical image dataset and real-time medical dataset respectively with maintained image quality. The improved near-lossless predictive coding technique achieves high compression ratio without losing diagnostic information from the image.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31659588</pmid><doi>10.1007/s10278-019-00283-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2433-5676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-1889
ispartof Journal of digital imaging, 2020-04, Vol.33 (2), p.516-530
issn 0897-1889
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7165212
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adaptive algorithms
Algorithms
Coding
Compression
Compression ratio
Compression tests
Datasets
Diagnostic systems
Image compression
Image quality
Imaging
Measurement
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Noise levels
Optimization
Pixels
Quality assessment
Quality control
Radiology
Real time
Redundancy
Signal to noise ratio
title A Block Adaptive Near-Lossless Compression Algorithm for Medical Image Sequences and Diagnostic Quality Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Block%20Adaptive%20Near-Lossless%20Compression%20Algorithm%20for%20Medical%20Image%20Sequences%20and%20Diagnostic%20Quality%20Assessment&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Sharma,%20Urvashi&rft.date=2020-04-01&rft.volume=33&rft.issue=2&rft.spage=516&rft.epage=530&rft.pages=516-530&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-019-00283-3&rft_dat=%3Cproquest_pubme%3E2310292014%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391146151&rft_id=info:pmid/31659588&rfr_iscdi=true