Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity
Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recen...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-04, Vol.10 (1), p.6458-6458, Article 6458 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6458 |
---|---|
container_issue | 1 |
container_start_page | 6458 |
container_title | Scientific reports |
container_volume | 10 |
creator | Kato, Junpei Yamada, Toru Kawaguchi, Hiroshi Matsuda, Keiji Higo, Noriyuki |
description | Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage. |
doi_str_mv | 10.1038/s41598-020-63617-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7160113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390142595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c973f0903cd1646deb91c743338f078263c035d86bd981cfaf35b479b7576b853</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiNERavSF-gCRWLDxuBLbMcbJFRRqFSJDV1bjjM5dZXYwXaOOO_BA-OQ3mCBN7bG_3xz-avqnOD3BLP2Q2oIVy3CFCPBBJEIv6hOKG44oozSl8_ex9VZSne4HE5VQ9Sr6rhElcCtPKl-XS7eZhe8GWsPJiLnh2gi9CjNYHMMyYb5gDqToK8nMGmJMIHPdRhqe2v8DlLtfG1DzM4WhimwvcuHNTgZa34sRdAv0fldPYeUV76JNtcRbNhDPKygyfil5PbwM0Msya-ro8GMCc7u79Pq5vLz94uv6Prbl6uLT9fI8gZnZJVkA1aY2Z6IRvTQKWJlwxhrByxbKpjFjPet6HrVEjuYgfGukaqTXIqu5ey0-rhx56WboLdlrmhGPUc3mXjQwTj99493t3oX9loSgQlhBfDuHhDDOmnWk0sWxtF4CEvSlCksGs4xLtK3_0jvwhLL2jcVaShXa0d0U9my-RRheGyGYL36rjffdfFd__Fdr-g3z8d4THlwuQjYJkjzagTEp9r_wf4Gium8Yw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390142595</pqid></control><display><type>article</type><title>Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kato, Junpei ; Yamada, Toru ; Kawaguchi, Hiroshi ; Matsuda, Keiji ; Higo, Noriyuki</creator><creatorcontrib>Kato, Junpei ; Yamada, Toru ; Kawaguchi, Hiroshi ; Matsuda, Keiji ; Higo, Noriyuki</creatorcontrib><description>Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-63617-0</identifier><identifier>PMID: 32296087</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1689/534 ; 631/378/2632 ; 639/624/1107/510 ; 639/624/1111/55 ; 692/699/375/534 ; 692/700/565/491 ; Animals ; Brain damage ; Brain Infarction - diagnosis ; Brain Infarction - physiopathology ; Brain Infarction - rehabilitation ; Brain injury ; Cortex (premotor) ; Disease Models, Animal ; Feasibility Studies ; Female ; Functional Laterality - physiology ; Functional Neuroimaging - methods ; Hand - physiology ; Humanities and Social Sciences ; Humans ; I.R. radiation ; Inactivation ; Infrared spectroscopy ; Internal Capsule - blood supply ; Internal Capsule - pathology ; Macaca ; Motor Cortex - diagnostic imaging ; Motor Cortex - physiopathology ; Motor Skills - physiology ; multidisciplinary ; Muscimol ; Paralysis ; Recovery of function ; Recovery of Function - physiology ; Rehabilitation ; Science ; Science (multidisciplinary) ; Spectroscopy, Near-Infrared ; Spectrum analysis</subject><ispartof>Scientific reports, 2020-04, Vol.10 (1), p.6458-6458, Article 6458</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c973f0903cd1646deb91c743338f078263c035d86bd981cfaf35b479b7576b853</citedby><cites>FETCH-LOGICAL-c540t-c973f0903cd1646deb91c743338f078263c035d86bd981cfaf35b479b7576b853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160113/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160113/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32296087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kato, Junpei</creatorcontrib><creatorcontrib>Yamada, Toru</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><creatorcontrib>Matsuda, Keiji</creatorcontrib><creatorcontrib>Higo, Noriyuki</creatorcontrib><title>Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage.</description><subject>631/378/1689/534</subject><subject>631/378/2632</subject><subject>639/624/1107/510</subject><subject>639/624/1111/55</subject><subject>692/699/375/534</subject><subject>692/700/565/491</subject><subject>Animals</subject><subject>Brain damage</subject><subject>Brain Infarction - diagnosis</subject><subject>Brain Infarction - physiopathology</subject><subject>Brain Infarction - rehabilitation</subject><subject>Brain injury</subject><subject>Cortex (premotor)</subject><subject>Disease Models, Animal</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Functional Laterality - physiology</subject><subject>Functional Neuroimaging - methods</subject><subject>Hand - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>I.R. radiation</subject><subject>Inactivation</subject><subject>Infrared spectroscopy</subject><subject>Internal Capsule - blood supply</subject><subject>Internal Capsule - pathology</subject><subject>Macaca</subject><subject>Motor Cortex - diagnostic imaging</subject><subject>Motor Cortex - physiopathology</subject><subject>Motor Skills - physiology</subject><subject>multidisciplinary</subject><subject>Muscimol</subject><subject>Paralysis</subject><subject>Recovery of function</subject><subject>Recovery of Function - physiology</subject><subject>Rehabilitation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Spectrum analysis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1TAQhiNERavSF-gCRWLDxuBLbMcbJFRRqFSJDV1bjjM5dZXYwXaOOO_BA-OQ3mCBN7bG_3xz-avqnOD3BLP2Q2oIVy3CFCPBBJEIv6hOKG44oozSl8_ex9VZSne4HE5VQ9Sr6rhElcCtPKl-XS7eZhe8GWsPJiLnh2gi9CjNYHMMyYb5gDqToK8nMGmJMIHPdRhqe2v8DlLtfG1DzM4WhimwvcuHNTgZa34sRdAv0fldPYeUV76JNtcRbNhDPKygyfil5PbwM0Msya-ro8GMCc7u79Pq5vLz94uv6Prbl6uLT9fI8gZnZJVkA1aY2Z6IRvTQKWJlwxhrByxbKpjFjPet6HrVEjuYgfGukaqTXIqu5ey0-rhx56WboLdlrmhGPUc3mXjQwTj99493t3oX9loSgQlhBfDuHhDDOmnWk0sWxtF4CEvSlCksGs4xLtK3_0jvwhLL2jcVaShXa0d0U9my-RRheGyGYL36rjffdfFd__Fdr-g3z8d4THlwuQjYJkjzagTEp9r_wf4Gium8Yw</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Kato, Junpei</creator><creator>Yamada, Toru</creator><creator>Kawaguchi, Hiroshi</creator><creator>Matsuda, Keiji</creator><creator>Higo, Noriyuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200415</creationdate><title>Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity</title><author>Kato, Junpei ; Yamada, Toru ; Kawaguchi, Hiroshi ; Matsuda, Keiji ; Higo, Noriyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c973f0903cd1646deb91c743338f078263c035d86bd981cfaf35b479b7576b853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/1689/534</topic><topic>631/378/2632</topic><topic>639/624/1107/510</topic><topic>639/624/1111/55</topic><topic>692/699/375/534</topic><topic>692/700/565/491</topic><topic>Animals</topic><topic>Brain damage</topic><topic>Brain Infarction - diagnosis</topic><topic>Brain Infarction - physiopathology</topic><topic>Brain Infarction - rehabilitation</topic><topic>Brain injury</topic><topic>Cortex (premotor)</topic><topic>Disease Models, Animal</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Functional Laterality - physiology</topic><topic>Functional Neuroimaging - methods</topic><topic>Hand - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>I.R. radiation</topic><topic>Inactivation</topic><topic>Infrared spectroscopy</topic><topic>Internal Capsule - blood supply</topic><topic>Internal Capsule - pathology</topic><topic>Macaca</topic><topic>Motor Cortex - diagnostic imaging</topic><topic>Motor Cortex - physiopathology</topic><topic>Motor Skills - physiology</topic><topic>multidisciplinary</topic><topic>Muscimol</topic><topic>Paralysis</topic><topic>Recovery of function</topic><topic>Recovery of Function - physiology</topic><topic>Rehabilitation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Junpei</creatorcontrib><creatorcontrib>Yamada, Toru</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><creatorcontrib>Matsuda, Keiji</creatorcontrib><creatorcontrib>Higo, Noriyuki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Junpei</au><au>Yamada, Toru</au><au>Kawaguchi, Hiroshi</au><au>Matsuda, Keiji</au><au>Higo, Noriyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-04-15</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>6458</spage><epage>6458</epage><pages>6458-6458</pages><artnum>6458</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32296087</pmid><doi>10.1038/s41598-020-63617-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-04, Vol.10 (1), p.6458-6458, Article 6458 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7160113 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/378/1689/534 631/378/2632 639/624/1107/510 639/624/1111/55 692/699/375/534 692/700/565/491 Animals Brain damage Brain Infarction - diagnosis Brain Infarction - physiopathology Brain Infarction - rehabilitation Brain injury Cortex (premotor) Disease Models, Animal Feasibility Studies Female Functional Laterality - physiology Functional Neuroimaging - methods Hand - physiology Humanities and Social Sciences Humans I.R. radiation Inactivation Infrared spectroscopy Internal Capsule - blood supply Internal Capsule - pathology Macaca Motor Cortex - diagnostic imaging Motor Cortex - physiopathology Motor Skills - physiology multidisciplinary Muscimol Paralysis Recovery of function Recovery of Function - physiology Rehabilitation Science Science (multidisciplinary) Spectroscopy, Near-Infrared Spectrum analysis |
title | Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20near-infrared-spectroscopy-based%20measurement%20of%20changes%20in%20cortical%20activity%20in%20macaques%20during%20post-infarct%20recovery%20of%20manual%20dexterity&rft.jtitle=Scientific%20reports&rft.au=Kato,%20Junpei&rft.date=2020-04-15&rft.volume=10&rft.issue=1&rft.spage=6458&rft.epage=6458&rft.pages=6458-6458&rft.artnum=6458&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-63617-0&rft_dat=%3Cproquest_pubme%3E2390142595%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390142595&rft_id=info:pmid/32296087&rfr_iscdi=true |