Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity

Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-04, Vol.10 (1), p.6458-6458, Article 6458
Hauptverfasser: Kato, Junpei, Yamada, Toru, Kawaguchi, Hiroshi, Matsuda, Keiji, Higo, Noriyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6458
container_issue 1
container_start_page 6458
container_title Scientific reports
container_volume 10
creator Kato, Junpei
Yamada, Toru
Kawaguchi, Hiroshi
Matsuda, Keiji
Higo, Noriyuki
description Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage.
doi_str_mv 10.1038/s41598-020-63617-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7160113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390142595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c973f0903cd1646deb91c743338f078263c035d86bd981cfaf35b479b7576b853</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiNERavSF-gCRWLDxuBLbMcbJFRRqFSJDV1bjjM5dZXYwXaOOO_BA-OQ3mCBN7bG_3xz-avqnOD3BLP2Q2oIVy3CFCPBBJEIv6hOKG44oozSl8_ex9VZSne4HE5VQ9Sr6rhElcCtPKl-XS7eZhe8GWsPJiLnh2gi9CjNYHMMyYb5gDqToK8nMGmJMIHPdRhqe2v8DlLtfG1DzM4WhimwvcuHNTgZa34sRdAv0fldPYeUV76JNtcRbNhDPKygyfil5PbwM0Msya-ro8GMCc7u79Pq5vLz94uv6Prbl6uLT9fI8gZnZJVkA1aY2Z6IRvTQKWJlwxhrByxbKpjFjPet6HrVEjuYgfGukaqTXIqu5ey0-rhx56WboLdlrmhGPUc3mXjQwTj99493t3oX9loSgQlhBfDuHhDDOmnWk0sWxtF4CEvSlCksGs4xLtK3_0jvwhLL2jcVaShXa0d0U9my-RRheGyGYL36rjffdfFd__Fdr-g3z8d4THlwuQjYJkjzagTEp9r_wf4Gium8Yw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390142595</pqid></control><display><type>article</type><title>Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kato, Junpei ; Yamada, Toru ; Kawaguchi, Hiroshi ; Matsuda, Keiji ; Higo, Noriyuki</creator><creatorcontrib>Kato, Junpei ; Yamada, Toru ; Kawaguchi, Hiroshi ; Matsuda, Keiji ; Higo, Noriyuki</creatorcontrib><description>Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-63617-0</identifier><identifier>PMID: 32296087</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1689/534 ; 631/378/2632 ; 639/624/1107/510 ; 639/624/1111/55 ; 692/699/375/534 ; 692/700/565/491 ; Animals ; Brain damage ; Brain Infarction - diagnosis ; Brain Infarction - physiopathology ; Brain Infarction - rehabilitation ; Brain injury ; Cortex (premotor) ; Disease Models, Animal ; Feasibility Studies ; Female ; Functional Laterality - physiology ; Functional Neuroimaging - methods ; Hand - physiology ; Humanities and Social Sciences ; Humans ; I.R. radiation ; Inactivation ; Infrared spectroscopy ; Internal Capsule - blood supply ; Internal Capsule - pathology ; Macaca ; Motor Cortex - diagnostic imaging ; Motor Cortex - physiopathology ; Motor Skills - physiology ; multidisciplinary ; Muscimol ; Paralysis ; Recovery of function ; Recovery of Function - physiology ; Rehabilitation ; Science ; Science (multidisciplinary) ; Spectroscopy, Near-Infrared ; Spectrum analysis</subject><ispartof>Scientific reports, 2020-04, Vol.10 (1), p.6458-6458, Article 6458</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c973f0903cd1646deb91c743338f078263c035d86bd981cfaf35b479b7576b853</citedby><cites>FETCH-LOGICAL-c540t-c973f0903cd1646deb91c743338f078263c035d86bd981cfaf35b479b7576b853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160113/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160113/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32296087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kato, Junpei</creatorcontrib><creatorcontrib>Yamada, Toru</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><creatorcontrib>Matsuda, Keiji</creatorcontrib><creatorcontrib>Higo, Noriyuki</creatorcontrib><title>Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage.</description><subject>631/378/1689/534</subject><subject>631/378/2632</subject><subject>639/624/1107/510</subject><subject>639/624/1111/55</subject><subject>692/699/375/534</subject><subject>692/700/565/491</subject><subject>Animals</subject><subject>Brain damage</subject><subject>Brain Infarction - diagnosis</subject><subject>Brain Infarction - physiopathology</subject><subject>Brain Infarction - rehabilitation</subject><subject>Brain injury</subject><subject>Cortex (premotor)</subject><subject>Disease Models, Animal</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Functional Laterality - physiology</subject><subject>Functional Neuroimaging - methods</subject><subject>Hand - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>I.R. radiation</subject><subject>Inactivation</subject><subject>Infrared spectroscopy</subject><subject>Internal Capsule - blood supply</subject><subject>Internal Capsule - pathology</subject><subject>Macaca</subject><subject>Motor Cortex - diagnostic imaging</subject><subject>Motor Cortex - physiopathology</subject><subject>Motor Skills - physiology</subject><subject>multidisciplinary</subject><subject>Muscimol</subject><subject>Paralysis</subject><subject>Recovery of function</subject><subject>Recovery of Function - physiology</subject><subject>Rehabilitation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Spectrum analysis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1TAQhiNERavSF-gCRWLDxuBLbMcbJFRRqFSJDV1bjjM5dZXYwXaOOO_BA-OQ3mCBN7bG_3xz-avqnOD3BLP2Q2oIVy3CFCPBBJEIv6hOKG44oozSl8_ex9VZSne4HE5VQ9Sr6rhElcCtPKl-XS7eZhe8GWsPJiLnh2gi9CjNYHMMyYb5gDqToK8nMGmJMIHPdRhqe2v8DlLtfG1DzM4WhimwvcuHNTgZa34sRdAv0fldPYeUV76JNtcRbNhDPKygyfil5PbwM0Msya-ro8GMCc7u79Pq5vLz94uv6Prbl6uLT9fI8gZnZJVkA1aY2Z6IRvTQKWJlwxhrByxbKpjFjPet6HrVEjuYgfGukaqTXIqu5ey0-rhx56WboLdlrmhGPUc3mXjQwTj99493t3oX9loSgQlhBfDuHhDDOmnWk0sWxtF4CEvSlCksGs4xLtK3_0jvwhLL2jcVaShXa0d0U9my-RRheGyGYL36rjffdfFd__Fdr-g3z8d4THlwuQjYJkjzagTEp9r_wf4Gium8Yw</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Kato, Junpei</creator><creator>Yamada, Toru</creator><creator>Kawaguchi, Hiroshi</creator><creator>Matsuda, Keiji</creator><creator>Higo, Noriyuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200415</creationdate><title>Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity</title><author>Kato, Junpei ; Yamada, Toru ; Kawaguchi, Hiroshi ; Matsuda, Keiji ; Higo, Noriyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c973f0903cd1646deb91c743338f078263c035d86bd981cfaf35b479b7576b853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378/1689/534</topic><topic>631/378/2632</topic><topic>639/624/1107/510</topic><topic>639/624/1111/55</topic><topic>692/699/375/534</topic><topic>692/700/565/491</topic><topic>Animals</topic><topic>Brain damage</topic><topic>Brain Infarction - diagnosis</topic><topic>Brain Infarction - physiopathology</topic><topic>Brain Infarction - rehabilitation</topic><topic>Brain injury</topic><topic>Cortex (premotor)</topic><topic>Disease Models, Animal</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Functional Laterality - physiology</topic><topic>Functional Neuroimaging - methods</topic><topic>Hand - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>I.R. radiation</topic><topic>Inactivation</topic><topic>Infrared spectroscopy</topic><topic>Internal Capsule - blood supply</topic><topic>Internal Capsule - pathology</topic><topic>Macaca</topic><topic>Motor Cortex - diagnostic imaging</topic><topic>Motor Cortex - physiopathology</topic><topic>Motor Skills - physiology</topic><topic>multidisciplinary</topic><topic>Muscimol</topic><topic>Paralysis</topic><topic>Recovery of function</topic><topic>Recovery of Function - physiology</topic><topic>Rehabilitation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Junpei</creatorcontrib><creatorcontrib>Yamada, Toru</creatorcontrib><creatorcontrib>Kawaguchi, Hiroshi</creatorcontrib><creatorcontrib>Matsuda, Keiji</creatorcontrib><creatorcontrib>Higo, Noriyuki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Junpei</au><au>Yamada, Toru</au><au>Kawaguchi, Hiroshi</au><au>Matsuda, Keiji</au><au>Higo, Noriyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-04-15</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>6458</spage><epage>6458</epage><pages>6458-6458</pages><artnum>6458</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Because compensatory changes in brain activity underlie functional recovery after brain damage, monitoring of these changes will help to improve rehabilitation effectiveness. Functional near-infrared spectroscopy (fNIRS) has the potential to measure brain activity in freely moving subjects. We recently established a macaque model of internal capsule infarcts and an fNIRS system for use in the monkey brain. Here, we used these systems to study motor recovery in two macaques, for which focal infarcts of different sizes were induced in the posterior limb of the internal capsule. Immediately after the injection, flaccid paralysis was observed in the hand contralateral to the injected hemisphere. Thereafter, dexterous hand movements gradually recovered over months. After movement recovery, task-evoked hemodynamic responses increased in the ventral premotor cortex (PMv). The response in the PMv of the infarcted (i.e., ipsilesional) hemisphere increased in the monkey that had received less damage. In contrast, the PMv of the non-infarcted (contralesional) hemisphere was recruited in the monkey with more damage. A pharmacological inactivation experiment with muscimol suggested the involvement of these areas in dexterous hand movements during recovery. These results indicate that fNIRS can be used to evaluate brain activity changes crucial for functional recovery after brain damage.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32296087</pmid><doi>10.1038/s41598-020-63617-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-04, Vol.10 (1), p.6458-6458, Article 6458
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7160113
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/378/1689/534
631/378/2632
639/624/1107/510
639/624/1111/55
692/699/375/534
692/700/565/491
Animals
Brain damage
Brain Infarction - diagnosis
Brain Infarction - physiopathology
Brain Infarction - rehabilitation
Brain injury
Cortex (premotor)
Disease Models, Animal
Feasibility Studies
Female
Functional Laterality - physiology
Functional Neuroimaging - methods
Hand - physiology
Humanities and Social Sciences
Humans
I.R. radiation
Inactivation
Infrared spectroscopy
Internal Capsule - blood supply
Internal Capsule - pathology
Macaca
Motor Cortex - diagnostic imaging
Motor Cortex - physiopathology
Motor Skills - physiology
multidisciplinary
Muscimol
Paralysis
Recovery of function
Recovery of Function - physiology
Rehabilitation
Science
Science (multidisciplinary)
Spectroscopy, Near-Infrared
Spectrum analysis
title Functional near-infrared-spectroscopy-based measurement of changes in cortical activity in macaques during post-infarct recovery of manual dexterity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20near-infrared-spectroscopy-based%20measurement%20of%20changes%20in%20cortical%20activity%20in%20macaques%20during%20post-infarct%20recovery%20of%20manual%20dexterity&rft.jtitle=Scientific%20reports&rft.au=Kato,%20Junpei&rft.date=2020-04-15&rft.volume=10&rft.issue=1&rft.spage=6458&rft.epage=6458&rft.pages=6458-6458&rft.artnum=6458&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-63617-0&rft_dat=%3Cproquest_pubme%3E2390142595%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390142595&rft_id=info:pmid/32296087&rfr_iscdi=true