Multi‐Spectroscopic Interrogation of the Spatial Linker Distribution in Defect‐Engineered Metal–Organic Framework Crystals: The [Cu3(btc)2−x(cydc)x] Showcase
In the past few years, defect‐engineered metal–organic frameworks (DEMOFs) have been studied due to the plethora of textural, catalytic, or magnetic properties that can be enhanced by carefully introducing defect sites into the crystal lattices of MOFs. In this work, the spatial distribution of two...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2020-03, Vol.26 (16), p.3614-3625 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3625 |
---|---|
container_issue | 16 |
container_start_page | 3614 |
container_title | Chemistry : a European journal |
container_volume | 26 |
creator | Rivera‐Torrente, Miguel Filez, Matthias Meirer, Florian Weckhuysen, Bert M. |
description | In the past few years, defect‐engineered metal–organic frameworks (DEMOFs) have been studied due to the plethora of textural, catalytic, or magnetic properties that can be enhanced by carefully introducing defect sites into the crystal lattices of MOFs. In this work, the spatial distribution of two different non‐defective and defective linkers, namely 1,3,5‐benzenetricarboxylate (BTC) and 5‐cyano‐1,3‐benzenedicarboxylate (CYDC), respectively, has been studied in different DEMOF crystals of the HKUST‐1 topology. Raman micro‐spectroscopy revealed a nonhomogeneous distribution of defect sites within the [Cu3(btc)2−x(cydc)x] crystals, with the CYDC linker incorporated into defect‐rich or defect‐free areas of selected crystals. Additionally, advanced bulk techniques have shed light on the nature of the copper species, which is highly dynamic and directly affects the reactivity of the copper sites, as shown by probe molecule FTIR spectroscopy. Furthermore, electron microscopy revealed the effect of co‐crystallizing CYDC and BTC on the crystal size and the formation of mesopores, further corroborated by X‐ray scattering analysis. In this way we have demonstrated the necessity of utilizing micro‐spectroscopy along with a whole array of bulk spectroscopic techniques to fully describe multicomponent metal–organic frameworks.
Questioning the Suspects! Raman micro‐spectroscopy has revealed that defective 5‐cyano‐1,3‐benzenedicarboxylate (CYDC) linkers are located only in some crystals of [Cu3(btc)2−x(cydc)x] (BTC=1,3,5‐benzenetricarboxylate) after co‐crystallization into defect‐engineered HKUST‐1. Raman micro‐spectroscopy in combination with other bulk techniques has shed light on the effects of this dispersion on the material (e.g., on metal oxidation state, the formation of mesopores or the crystal size). |
doi_str_mv | 10.1002/chem.201905645 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7154733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342357111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5715-8ce20f172dd4cc0beb6410481b1bca8a2f012e3304c4452245e69f94bbff83ca3</originalsourceid><addsrcrecordid>eNqFkstuEzEUhkcIRENhyxJZYpMuEnybG4tKaJrSSom6SFkhZHk8ZxK3M3awZ0iz65IlgmfgxfIkuKSEy4aVZZ3Pn8_Rf6LoOcFjgjF9pZbQjikmOY4THj-IBiSmZMTSJH4YDXDO01ESs_wgeuL9FcY4Txh7HB0wkscpoXgQfZ_1Tae3t1_mK1Cds17ZlVbo3HTgnF3ITluDbI26JaD5Klxlg6baXINDJ9p3Tpf9T0QbdAJ1UATVxCy0AXBQoRl0stnefrtwC2mC99TJFtbWXaPCbXyo-dfoMqjfFz0blp06otvPX2-GalOpo5sPaL60ayU9PI0e1YGFZ_fnYfTudHJZnI2mF2_PizfTkQrjxKNMAcU1SWlVcaVwCWXCCeYZKUmpZCZpjQkFxjBXnMeU8hiSvM55WdZ1xpRkh9HxzrvqyxYqBaZzshErp1vpNsJKLf6uGL0UC_tJhN95ylgQDO8Fzn7swXei1V5B00gDtveCMk5Z6JWQgL78B72yvTNhvEClGcmzEGmgxjtKhWy8g3rfDMHibgPE3QaI_QaEBy_-HGGP_4o8APkOWOsGNv_RieJsMvst_wG4X8Rs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378198056</pqid></control><display><type>article</type><title>Multi‐Spectroscopic Interrogation of the Spatial Linker Distribution in Defect‐Engineered Metal–Organic Framework Crystals: The [Cu3(btc)2−x(cydc)x] Showcase</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rivera‐Torrente, Miguel ; Filez, Matthias ; Meirer, Florian ; Weckhuysen, Bert M.</creator><creatorcontrib>Rivera‐Torrente, Miguel ; Filez, Matthias ; Meirer, Florian ; Weckhuysen, Bert M.</creatorcontrib><description>In the past few years, defect‐engineered metal–organic frameworks (DEMOFs) have been studied due to the plethora of textural, catalytic, or magnetic properties that can be enhanced by carefully introducing defect sites into the crystal lattices of MOFs. In this work, the spatial distribution of two different non‐defective and defective linkers, namely 1,3,5‐benzenetricarboxylate (BTC) and 5‐cyano‐1,3‐benzenedicarboxylate (CYDC), respectively, has been studied in different DEMOF crystals of the HKUST‐1 topology. Raman micro‐spectroscopy revealed a nonhomogeneous distribution of defect sites within the [Cu3(btc)2−x(cydc)x] crystals, with the CYDC linker incorporated into defect‐rich or defect‐free areas of selected crystals. Additionally, advanced bulk techniques have shed light on the nature of the copper species, which is highly dynamic and directly affects the reactivity of the copper sites, as shown by probe molecule FTIR spectroscopy. Furthermore, electron microscopy revealed the effect of co‐crystallizing CYDC and BTC on the crystal size and the formation of mesopores, further corroborated by X‐ray scattering analysis. In this way we have demonstrated the necessity of utilizing micro‐spectroscopy along with a whole array of bulk spectroscopic techniques to fully describe multicomponent metal–organic frameworks.
Questioning the Suspects! Raman micro‐spectroscopy has revealed that defective 5‐cyano‐1,3‐benzenedicarboxylate (CYDC) linkers are located only in some crystals of [Cu3(btc)2−x(cydc)x] (BTC=1,3,5‐benzenetricarboxylate) after co‐crystallization into defect‐engineered HKUST‐1. Raman micro‐spectroscopy in combination with other bulk techniques has shed light on the effects of this dispersion on the material (e.g., on metal oxidation state, the formation of mesopores or the crystal size).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201905645</identifier><identifier>PMID: 31957120</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemistry ; Copper ; Crystal defects ; crystal engineering ; Crystal lattices ; Crystal structure ; Crystals ; Defects ; Electron microscopy ; Interrogation ; Magnetic properties ; materials characterization ; Metal-organic frameworks ; microporous materials ; Raman spectroscopy ; Spatial distribution ; Spectroscopy ; Spectrum analysis ; Topology</subject><ispartof>Chemistry : a European journal, 2020-03, Vol.26 (16), p.3614-3625</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5715-8ce20f172dd4cc0beb6410481b1bca8a2f012e3304c4452245e69f94bbff83ca3</citedby><cites>FETCH-LOGICAL-c5715-8ce20f172dd4cc0beb6410481b1bca8a2f012e3304c4452245e69f94bbff83ca3</cites><orcidid>0000-0001-5245-1426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201905645$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201905645$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31957120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivera‐Torrente, Miguel</creatorcontrib><creatorcontrib>Filez, Matthias</creatorcontrib><creatorcontrib>Meirer, Florian</creatorcontrib><creatorcontrib>Weckhuysen, Bert M.</creatorcontrib><title>Multi‐Spectroscopic Interrogation of the Spatial Linker Distribution in Defect‐Engineered Metal–Organic Framework Crystals: The [Cu3(btc)2−x(cydc)x] Showcase</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>In the past few years, defect‐engineered metal–organic frameworks (DEMOFs) have been studied due to the plethora of textural, catalytic, or magnetic properties that can be enhanced by carefully introducing defect sites into the crystal lattices of MOFs. In this work, the spatial distribution of two different non‐defective and defective linkers, namely 1,3,5‐benzenetricarboxylate (BTC) and 5‐cyano‐1,3‐benzenedicarboxylate (CYDC), respectively, has been studied in different DEMOF crystals of the HKUST‐1 topology. Raman micro‐spectroscopy revealed a nonhomogeneous distribution of defect sites within the [Cu3(btc)2−x(cydc)x] crystals, with the CYDC linker incorporated into defect‐rich or defect‐free areas of selected crystals. Additionally, advanced bulk techniques have shed light on the nature of the copper species, which is highly dynamic and directly affects the reactivity of the copper sites, as shown by probe molecule FTIR spectroscopy. Furthermore, electron microscopy revealed the effect of co‐crystallizing CYDC and BTC on the crystal size and the formation of mesopores, further corroborated by X‐ray scattering analysis. In this way we have demonstrated the necessity of utilizing micro‐spectroscopy along with a whole array of bulk spectroscopic techniques to fully describe multicomponent metal–organic frameworks.
Questioning the Suspects! Raman micro‐spectroscopy has revealed that defective 5‐cyano‐1,3‐benzenedicarboxylate (CYDC) linkers are located only in some crystals of [Cu3(btc)2−x(cydc)x] (BTC=1,3,5‐benzenetricarboxylate) after co‐crystallization into defect‐engineered HKUST‐1. Raman micro‐spectroscopy in combination with other bulk techniques has shed light on the effects of this dispersion on the material (e.g., on metal oxidation state, the formation of mesopores or the crystal size).</description><subject>Chemistry</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>crystal engineering</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Defects</subject><subject>Electron microscopy</subject><subject>Interrogation</subject><subject>Magnetic properties</subject><subject>materials characterization</subject><subject>Metal-organic frameworks</subject><subject>microporous materials</subject><subject>Raman spectroscopy</subject><subject>Spatial distribution</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Topology</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkstuEzEUhkcIRENhyxJZYpMuEnybG4tKaJrSSom6SFkhZHk8ZxK3M3awZ0iz65IlgmfgxfIkuKSEy4aVZZ3Pn8_Rf6LoOcFjgjF9pZbQjikmOY4THj-IBiSmZMTSJH4YDXDO01ESs_wgeuL9FcY4Txh7HB0wkscpoXgQfZ_1Tae3t1_mK1Cds17ZlVbo3HTgnF3ITluDbI26JaD5Klxlg6baXINDJ9p3Tpf9T0QbdAJ1UATVxCy0AXBQoRl0stnefrtwC2mC99TJFtbWXaPCbXyo-dfoMqjfFz0blp06otvPX2-GalOpo5sPaL60ayU9PI0e1YGFZ_fnYfTudHJZnI2mF2_PizfTkQrjxKNMAcU1SWlVcaVwCWXCCeYZKUmpZCZpjQkFxjBXnMeU8hiSvM55WdZ1xpRkh9HxzrvqyxYqBaZzshErp1vpNsJKLf6uGL0UC_tJhN95ylgQDO8Fzn7swXei1V5B00gDtveCMk5Z6JWQgL78B72yvTNhvEClGcmzEGmgxjtKhWy8g3rfDMHibgPE3QaI_QaEBy_-HGGP_4o8APkOWOsGNv_RieJsMvst_wG4X8Rs</recordid><startdate>20200318</startdate><enddate>20200318</enddate><creator>Rivera‐Torrente, Miguel</creator><creator>Filez, Matthias</creator><creator>Meirer, Florian</creator><creator>Weckhuysen, Bert M.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5245-1426</orcidid></search><sort><creationdate>20200318</creationdate><title>Multi‐Spectroscopic Interrogation of the Spatial Linker Distribution in Defect‐Engineered Metal–Organic Framework Crystals: The [Cu3(btc)2−x(cydc)x] Showcase</title><author>Rivera‐Torrente, Miguel ; Filez, Matthias ; Meirer, Florian ; Weckhuysen, Bert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5715-8ce20f172dd4cc0beb6410481b1bca8a2f012e3304c4452245e69f94bbff83ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>crystal engineering</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Defects</topic><topic>Electron microscopy</topic><topic>Interrogation</topic><topic>Magnetic properties</topic><topic>materials characterization</topic><topic>Metal-organic frameworks</topic><topic>microporous materials</topic><topic>Raman spectroscopy</topic><topic>Spatial distribution</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera‐Torrente, Miguel</creatorcontrib><creatorcontrib>Filez, Matthias</creatorcontrib><creatorcontrib>Meirer, Florian</creatorcontrib><creatorcontrib>Weckhuysen, Bert M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera‐Torrente, Miguel</au><au>Filez, Matthias</au><au>Meirer, Florian</au><au>Weckhuysen, Bert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐Spectroscopic Interrogation of the Spatial Linker Distribution in Defect‐Engineered Metal–Organic Framework Crystals: The [Cu3(btc)2−x(cydc)x] Showcase</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-03-18</date><risdate>2020</risdate><volume>26</volume><issue>16</issue><spage>3614</spage><epage>3625</epage><pages>3614-3625</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>In the past few years, defect‐engineered metal–organic frameworks (DEMOFs) have been studied due to the plethora of textural, catalytic, or magnetic properties that can be enhanced by carefully introducing defect sites into the crystal lattices of MOFs. In this work, the spatial distribution of two different non‐defective and defective linkers, namely 1,3,5‐benzenetricarboxylate (BTC) and 5‐cyano‐1,3‐benzenedicarboxylate (CYDC), respectively, has been studied in different DEMOF crystals of the HKUST‐1 topology. Raman micro‐spectroscopy revealed a nonhomogeneous distribution of defect sites within the [Cu3(btc)2−x(cydc)x] crystals, with the CYDC linker incorporated into defect‐rich or defect‐free areas of selected crystals. Additionally, advanced bulk techniques have shed light on the nature of the copper species, which is highly dynamic and directly affects the reactivity of the copper sites, as shown by probe molecule FTIR spectroscopy. Furthermore, electron microscopy revealed the effect of co‐crystallizing CYDC and BTC on the crystal size and the formation of mesopores, further corroborated by X‐ray scattering analysis. In this way we have demonstrated the necessity of utilizing micro‐spectroscopy along with a whole array of bulk spectroscopic techniques to fully describe multicomponent metal–organic frameworks.
Questioning the Suspects! Raman micro‐spectroscopy has revealed that defective 5‐cyano‐1,3‐benzenedicarboxylate (CYDC) linkers are located only in some crystals of [Cu3(btc)2−x(cydc)x] (BTC=1,3,5‐benzenetricarboxylate) after co‐crystallization into defect‐engineered HKUST‐1. Raman micro‐spectroscopy in combination with other bulk techniques has shed light on the effects of this dispersion on the material (e.g., on metal oxidation state, the formation of mesopores or the crystal size).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31957120</pmid><doi>10.1002/chem.201905645</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5245-1426</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2020-03, Vol.26 (16), p.3614-3625 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7154733 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemistry Copper Crystal defects crystal engineering Crystal lattices Crystal structure Crystals Defects Electron microscopy Interrogation Magnetic properties materials characterization Metal-organic frameworks microporous materials Raman spectroscopy Spatial distribution Spectroscopy Spectrum analysis Topology |
title | Multi‐Spectroscopic Interrogation of the Spatial Linker Distribution in Defect‐Engineered Metal–Organic Framework Crystals: The [Cu3(btc)2−x(cydc)x] Showcase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90Spectroscopic%20Interrogation%20of%20the%20Spatial%20Linker%20Distribution%20in%20Defect%E2%80%90Engineered%20Metal%E2%80%93Organic%20Framework%20Crystals:%20The%20%5BCu3(btc)2%E2%88%92x(cydc)x%5D%20Showcase&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Rivera%E2%80%90Torrente,%20Miguel&rft.date=2020-03-18&rft.volume=26&rft.issue=16&rft.spage=3614&rft.epage=3625&rft.pages=3614-3625&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201905645&rft_dat=%3Cproquest_pubme%3E2342357111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378198056&rft_id=info:pmid/31957120&rfr_iscdi=true |