Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials

Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theranostics 2020-01, Vol.10 (10), p.4359-4373
Hauptverfasser: Ye, Haihang, Liu, Yaning, Zhan, Li, Liu, Yilin, Qin, Zhenpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4373
container_issue 10
container_start_page 4359
container_title Theranostics
container_volume 10
creator Ye, Haihang
Liu, Yaning
Zhan, Li
Liu, Yilin
Qin, Zhenpeng
description Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed.
doi_str_mv 10.7150/thno.44298
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7150487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598251818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1e08b250663d86dc471b96c0854150bc288ff398c56d0badf30bf7f285b5f3913</originalsourceid><addsrcrecordid>eNpVUV1PwyAUJUbjlrkXf4Bp4ptJJ9DS0hcTs_iVLPFBfSaUwsbSQleoun8v-3BOQnLJ4dzD4VwALhGc5IjAW78wdpKmuKAnYIhoQuM8S-Hp0XkAxs4tYVgpxAUqzsEgwbjABMIhaN703PA64k1ba6UF99qaiJsqWvXc-D8o7Jp72QWuqu1XxJ3jaxeV6wA72UXyW2i_p6qoDWBjjRaR4cY2m0bNa3cBzlQocryvI_Dx-PA-fY5nr08v0_tZLNIc-xhJSMvgL8uSimZVAFFZZAJSkoYvlwJTqlRSUEGyCpa8UgksVa4wJSUJOEpG4G6n2_ZlIyshjQ_GWdvphndrZrlm_2-MXrC5_WSbSFOaB4HrvUBnV710ni1t34WgHMOkoJggGvIdgZsdS3TWuU6qwwsIbqXYZjpsO51Avjr2dKD-ziL5ATLjjdk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598251818</pqid></control><display><type>article</type><title>Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ye, Haihang ; Liu, Yaning ; Zhan, Li ; Liu, Yilin ; Qin, Zhenpeng</creator><creatorcontrib>Ye, Haihang ; Liu, Yaning ; Zhan, Li ; Liu, Yilin ; Qin, Zhenpeng</creatorcontrib><description>Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed.</description><identifier>ISSN: 1838-7640</identifier><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.44298</identifier><identifier>PMID: 32292500</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher Pty Ltd</publisher><subject>Biosensing Techniques - methods ; Design ; Humans ; Infectious diseases ; Lasers ; Limit of Detection ; Metal Nanoparticles ; Nanomaterials ; Nanostructures ; Photoacoustic Techniques - methods ; Point-of-Care Testing ; Quantitative analysis ; Quantum dots ; Review ; Spectrum Analysis, Raman - methods</subject><ispartof>Theranostics, 2020-01, Vol.10 (10), p.4359-4373</ispartof><rights>The author(s).</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1e08b250663d86dc471b96c0854150bc288ff398c56d0badf30bf7f285b5f3913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150487/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150487/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,313,314,727,780,784,792,885,27922,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32292500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Haihang</creatorcontrib><creatorcontrib>Liu, Yaning</creatorcontrib><creatorcontrib>Zhan, Li</creatorcontrib><creatorcontrib>Liu, Yilin</creatorcontrib><creatorcontrib>Qin, Zhenpeng</creatorcontrib><title>Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials</title><title>Theranostics</title><addtitle>Theranostics</addtitle><description>Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed.</description><subject>Biosensing Techniques - methods</subject><subject>Design</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Lasers</subject><subject>Limit of Detection</subject><subject>Metal Nanoparticles</subject><subject>Nanomaterials</subject><subject>Nanostructures</subject><subject>Photoacoustic Techniques - methods</subject><subject>Point-of-Care Testing</subject><subject>Quantitative analysis</subject><subject>Quantum dots</subject><subject>Review</subject><subject>Spectrum Analysis, Raman - methods</subject><issn>1838-7640</issn><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVUV1PwyAUJUbjlrkXf4Bp4ptJJ9DS0hcTs_iVLPFBfSaUwsbSQleoun8v-3BOQnLJ4dzD4VwALhGc5IjAW78wdpKmuKAnYIhoQuM8S-Hp0XkAxs4tYVgpxAUqzsEgwbjABMIhaN703PA64k1ba6UF99qaiJsqWvXc-D8o7Jp72QWuqu1XxJ3jaxeV6wA72UXyW2i_p6qoDWBjjRaR4cY2m0bNa3cBzlQocryvI_Dx-PA-fY5nr08v0_tZLNIc-xhJSMvgL8uSimZVAFFZZAJSkoYvlwJTqlRSUEGyCpa8UgksVa4wJSUJOEpG4G6n2_ZlIyshjQ_GWdvphndrZrlm_2-MXrC5_WSbSFOaB4HrvUBnV710ni1t34WgHMOkoJggGvIdgZsdS3TWuU6qwwsIbqXYZjpsO51Avjr2dKD-ziL5ATLjjdk</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ye, Haihang</creator><creator>Liu, Yaning</creator><creator>Zhan, Li</creator><creator>Liu, Yilin</creator><creator>Qin, Zhenpeng</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials</title><author>Ye, Haihang ; Liu, Yaning ; Zhan, Li ; Liu, Yilin ; Qin, Zhenpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1e08b250663d86dc471b96c0854150bc288ff398c56d0badf30bf7f285b5f3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biosensing Techniques - methods</topic><topic>Design</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Lasers</topic><topic>Limit of Detection</topic><topic>Metal Nanoparticles</topic><topic>Nanomaterials</topic><topic>Nanostructures</topic><topic>Photoacoustic Techniques - methods</topic><topic>Point-of-Care Testing</topic><topic>Quantitative analysis</topic><topic>Quantum dots</topic><topic>Review</topic><topic>Spectrum Analysis, Raman - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Haihang</creatorcontrib><creatorcontrib>Liu, Yaning</creatorcontrib><creatorcontrib>Zhan, Li</creatorcontrib><creatorcontrib>Liu, Yilin</creatorcontrib><creatorcontrib>Qin, Zhenpeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Haihang</au><au>Liu, Yaning</au><au>Zhan, Li</au><au>Liu, Yilin</au><au>Qin, Zhenpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials</atitle><jtitle>Theranostics</jtitle><addtitle>Theranostics</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>10</issue><spage>4359</spage><epage>4373</epage><pages>4359-4373</pages><issn>1838-7640</issn><eissn>1838-7640</eissn><abstract>Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>32292500</pmid><doi>10.7150/thno.44298</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1838-7640
ispartof Theranostics, 2020-01, Vol.10 (10), p.4359-4373
issn 1838-7640
1838-7640
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7150487
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biosensing Techniques - methods
Design
Humans
Infectious diseases
Lasers
Limit of Detection
Metal Nanoparticles
Nanomaterials
Nanostructures
Photoacoustic Techniques - methods
Point-of-Care Testing
Quantitative analysis
Quantum dots
Review
Spectrum Analysis, Raman - methods
title Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20amplification%20and%20quantification%20on%20lateral%20flow%20assays%20by%20laser%20excitation%20of%20plasmonic%20nanomaterials&rft.jtitle=Theranostics&rft.au=Ye,%20Haihang&rft.date=2020-01-01&rft.volume=10&rft.issue=10&rft.spage=4359&rft.epage=4373&rft.pages=4359-4373&rft.issn=1838-7640&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.44298&rft_dat=%3Cproquest_pubme%3E2598251818%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598251818&rft_id=info:pmid/32292500&rfr_iscdi=true