Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials
Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further...
Gespeichert in:
Veröffentlicht in: | Theranostics 2020-01, Vol.10 (10), p.4359-4373 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4373 |
---|---|
container_issue | 10 |
container_start_page | 4359 |
container_title | Theranostics |
container_volume | 10 |
creator | Ye, Haihang Liu, Yaning Zhan, Li Liu, Yilin Qin, Zhenpeng |
description | Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed. |
doi_str_mv | 10.7150/thno.44298 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7150487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598251818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1e08b250663d86dc471b96c0854150bc288ff398c56d0badf30bf7f285b5f3913</originalsourceid><addsrcrecordid>eNpVUV1PwyAUJUbjlrkXf4Bp4ptJJ9DS0hcTs_iVLPFBfSaUwsbSQleoun8v-3BOQnLJ4dzD4VwALhGc5IjAW78wdpKmuKAnYIhoQuM8S-Hp0XkAxs4tYVgpxAUqzsEgwbjABMIhaN703PA64k1ba6UF99qaiJsqWvXc-D8o7Jp72QWuqu1XxJ3jaxeV6wA72UXyW2i_p6qoDWBjjRaR4cY2m0bNa3cBzlQocryvI_Dx-PA-fY5nr08v0_tZLNIc-xhJSMvgL8uSimZVAFFZZAJSkoYvlwJTqlRSUEGyCpa8UgksVa4wJSUJOEpG4G6n2_ZlIyshjQ_GWdvphndrZrlm_2-MXrC5_WSbSFOaB4HrvUBnV710ni1t34WgHMOkoJggGvIdgZsdS3TWuU6qwwsIbqXYZjpsO51Avjr2dKD-ziL5ATLjjdk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598251818</pqid></control><display><type>article</type><title>Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ye, Haihang ; Liu, Yaning ; Zhan, Li ; Liu, Yilin ; Qin, Zhenpeng</creator><creatorcontrib>Ye, Haihang ; Liu, Yaning ; Zhan, Li ; Liu, Yilin ; Qin, Zhenpeng</creatorcontrib><description>Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed.</description><identifier>ISSN: 1838-7640</identifier><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.44298</identifier><identifier>PMID: 32292500</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher Pty Ltd</publisher><subject>Biosensing Techniques - methods ; Design ; Humans ; Infectious diseases ; Lasers ; Limit of Detection ; Metal Nanoparticles ; Nanomaterials ; Nanostructures ; Photoacoustic Techniques - methods ; Point-of-Care Testing ; Quantitative analysis ; Quantum dots ; Review ; Spectrum Analysis, Raman - methods</subject><ispartof>Theranostics, 2020-01, Vol.10 (10), p.4359-4373</ispartof><rights>The author(s).</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1e08b250663d86dc471b96c0854150bc288ff398c56d0badf30bf7f285b5f3913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150487/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150487/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,313,314,727,780,784,792,885,27922,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32292500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Haihang</creatorcontrib><creatorcontrib>Liu, Yaning</creatorcontrib><creatorcontrib>Zhan, Li</creatorcontrib><creatorcontrib>Liu, Yilin</creatorcontrib><creatorcontrib>Qin, Zhenpeng</creatorcontrib><title>Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials</title><title>Theranostics</title><addtitle>Theranostics</addtitle><description>Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed.</description><subject>Biosensing Techniques - methods</subject><subject>Design</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Lasers</subject><subject>Limit of Detection</subject><subject>Metal Nanoparticles</subject><subject>Nanomaterials</subject><subject>Nanostructures</subject><subject>Photoacoustic Techniques - methods</subject><subject>Point-of-Care Testing</subject><subject>Quantitative analysis</subject><subject>Quantum dots</subject><subject>Review</subject><subject>Spectrum Analysis, Raman - methods</subject><issn>1838-7640</issn><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVUV1PwyAUJUbjlrkXf4Bp4ptJJ9DS0hcTs_iVLPFBfSaUwsbSQleoun8v-3BOQnLJ4dzD4VwALhGc5IjAW78wdpKmuKAnYIhoQuM8S-Hp0XkAxs4tYVgpxAUqzsEgwbjABMIhaN703PA64k1ba6UF99qaiJsqWvXc-D8o7Jp72QWuqu1XxJ3jaxeV6wA72UXyW2i_p6qoDWBjjRaR4cY2m0bNa3cBzlQocryvI_Dx-PA-fY5nr08v0_tZLNIc-xhJSMvgL8uSimZVAFFZZAJSkoYvlwJTqlRSUEGyCpa8UgksVa4wJSUJOEpG4G6n2_ZlIyshjQ_GWdvphndrZrlm_2-MXrC5_WSbSFOaB4HrvUBnV710ni1t34WgHMOkoJggGvIdgZsdS3TWuU6qwwsIbqXYZjpsO51Avjr2dKD-ziL5ATLjjdk</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ye, Haihang</creator><creator>Liu, Yaning</creator><creator>Zhan, Li</creator><creator>Liu, Yilin</creator><creator>Qin, Zhenpeng</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials</title><author>Ye, Haihang ; Liu, Yaning ; Zhan, Li ; Liu, Yilin ; Qin, Zhenpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1e08b250663d86dc471b96c0854150bc288ff398c56d0badf30bf7f285b5f3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biosensing Techniques - methods</topic><topic>Design</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Lasers</topic><topic>Limit of Detection</topic><topic>Metal Nanoparticles</topic><topic>Nanomaterials</topic><topic>Nanostructures</topic><topic>Photoacoustic Techniques - methods</topic><topic>Point-of-Care Testing</topic><topic>Quantitative analysis</topic><topic>Quantum dots</topic><topic>Review</topic><topic>Spectrum Analysis, Raman - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Haihang</creatorcontrib><creatorcontrib>Liu, Yaning</creatorcontrib><creatorcontrib>Zhan, Li</creatorcontrib><creatorcontrib>Liu, Yilin</creatorcontrib><creatorcontrib>Qin, Zhenpeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Haihang</au><au>Liu, Yaning</au><au>Zhan, Li</au><au>Liu, Yilin</au><au>Qin, Zhenpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials</atitle><jtitle>Theranostics</jtitle><addtitle>Theranostics</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>10</issue><spage>4359</spage><epage>4373</epage><pages>4359-4373</pages><issn>1838-7640</issn><eissn>1838-7640</eissn><abstract>Lateral flow assay (LFA) has become one of the most widely used point-of-care diagnostic methods due to its simplicity and low cost. While easy to use, LFA suffers from its low sensitivity and poor quantification, which largely limits its applications for early disease diagnosis and requires further testing to eliminate false-negative results. Over the past decade, signal enhancement strategies that took advantage of the laser excitation of plasmonic nanomaterials have pushed down the detection limit and enabled quantification of analytes. Significantly, these methods amplify the signal based on the current LFA design without modification. This review highlights these strategies of signal enhancement for LFA including surface enhanced Raman scattering (SERS), photothermal and photoacoustic methods. Perspectives on the rational design of the reader systems are provided. Future translation of the research toward clinical applications is also discussed.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>32292500</pmid><doi>10.7150/thno.44298</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1838-7640 |
ispartof | Theranostics, 2020-01, Vol.10 (10), p.4359-4373 |
issn | 1838-7640 1838-7640 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7150487 |
source | MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biosensing Techniques - methods Design Humans Infectious diseases Lasers Limit of Detection Metal Nanoparticles Nanomaterials Nanostructures Photoacoustic Techniques - methods Point-of-Care Testing Quantitative analysis Quantum dots Review Spectrum Analysis, Raman - methods |
title | Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20amplification%20and%20quantification%20on%20lateral%20flow%20assays%20by%20laser%20excitation%20of%20plasmonic%20nanomaterials&rft.jtitle=Theranostics&rft.au=Ye,%20Haihang&rft.date=2020-01-01&rft.volume=10&rft.issue=10&rft.spage=4359&rft.epage=4373&rft.pages=4359-4373&rft.issn=1838-7640&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.44298&rft_dat=%3Cproquest_pubme%3E2598251818%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598251818&rft_id=info:pmid/32292500&rfr_iscdi=true |