Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities

Every cell produces thousands of distinct lipid species, but insight into how lipid chemical diversity contributes to biological signaling is lacking, particularly because of a scarcity of methods for quantitatively studying lipid function in living cells. Using the example of diacylglycerols, promi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-04, Vol.117 (14), p.7729-7738
Hauptverfasser: Schuhmacher, Milena, Grasskamp, Andreas T., Barahtjan, Pavel, Wagner, Nicolai, Lombardot, Benoit, Schuhmacher, Jan S., Sala, Pia, Lohmann, Annett, Henry, Ian, Shevchenko, Andrej, Coskun, Ünal, Walter, Alexander M., Nadler, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7738
container_issue 14
container_start_page 7729
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Schuhmacher, Milena
Grasskamp, Andreas T.
Barahtjan, Pavel
Wagner, Nicolai
Lombardot, Benoit
Schuhmacher, Jan S.
Sala, Pia
Lohmann, Annett
Henry, Ian
Shevchenko, Andrej
Coskun, Ünal
Walter, Alexander M.
Nadler, André
description Every cell produces thousands of distinct lipid species, but insight into how lipid chemical diversity contributes to biological signaling is lacking, particularly because of a scarcity of methods for quantitatively studying lipid function in living cells. Using the example of diacylglycerols, prominent second messengers, we here investigate whether lipid chemical diversity can provide a basis for cellular signal specification. We generated photo-caged lipid probes, which allow acute manipulation of distinct diacylglycerol species in the plasma membrane. Combining uncaging experiments with mathematical modeling, we were able to determine binding constants for diacylglycerol–protein interactions, and kinetic parameters for diacylglycerol transbilayer movement and turnover in quantitative live-cell experiments. Strikingly, we find that affinities and kinetics vary by orders of magnitude due to diacylglycerol side-chain composition. These differences are sufficient to explain differential recruitment of diacylglycerol binding proteins and, thus, differing downstream phosphorylation patterns. Our approach represents a generally applicable method for elucidating the biological function of single lipid species on subcellular scales in quantitative live-cell experiments.
doi_str_mv 10.1073/pnas.1912684117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7149225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929718</jstor_id><sourcerecordid>26929718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-7b4f687c12a0444430235f920644150fceded43e01e3349627919d5c1ae03faf3</originalsourceid><addsrcrecordid>eNpdkUuP0zAUhS0EYjoDa1YgS2zYZMavxPEGCY14SZXYwNpyneupq8QOdlIpv2D-No5aysMbS77fOdf3HoReUXJLieR3YzD5lirKmlZQKp-gDSWKVo1Q5CnaEMJk1QomrtB1zgdCiKpb8hxdccYor1uxQY9bf4TKQt_j3o--wzsf7R4Gn6e04ARHMH3GBqfYA44Od97YpX_oFwvlCWffFfXe-IBtHMaY_eRjwC4mvHrOvUln324JZvC2eIUOjylOUDTGOR-KBPIL9MyVTvDyfN-gH58-fr__Um2_ff56_2Fb2ZqoqZI74ZpWWsoMEeVwwnjtFCONELQmzkIHneBAKHAuVMOkoqqrLTVAuDOO36D3J99x3g3QWQhTMr0ekx9MWnQ0Xv9bCX6vH-JRSyoUY3UxeHc2SPHnDHnSZVfrrCZAnLNmvCyc0laSgr79Dz3EOYUy3kopyWpV80LdnSibYs4J3OUzlOg1ZL2GrP-EXBRv_p7hwv9OtQCvT8AhTzFd6qxRTEna8l9m8K-B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389725953</pqid></control><display><type>article</type><title>Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Schuhmacher, Milena ; Grasskamp, Andreas T. ; Barahtjan, Pavel ; Wagner, Nicolai ; Lombardot, Benoit ; Schuhmacher, Jan S. ; Sala, Pia ; Lohmann, Annett ; Henry, Ian ; Shevchenko, Andrej ; Coskun, Ünal ; Walter, Alexander M. ; Nadler, André</creator><creatorcontrib>Schuhmacher, Milena ; Grasskamp, Andreas T. ; Barahtjan, Pavel ; Wagner, Nicolai ; Lombardot, Benoit ; Schuhmacher, Jan S. ; Sala, Pia ; Lohmann, Annett ; Henry, Ian ; Shevchenko, Andrej ; Coskun, Ünal ; Walter, Alexander M. ; Nadler, André</creatorcontrib><description>Every cell produces thousands of distinct lipid species, but insight into how lipid chemical diversity contributes to biological signaling is lacking, particularly because of a scarcity of methods for quantitatively studying lipid function in living cells. Using the example of diacylglycerols, prominent second messengers, we here investigate whether lipid chemical diversity can provide a basis for cellular signal specification. We generated photo-caged lipid probes, which allow acute manipulation of distinct diacylglycerol species in the plasma membrane. Combining uncaging experiments with mathematical modeling, we were able to determine binding constants for diacylglycerol–protein interactions, and kinetic parameters for diacylglycerol transbilayer movement and turnover in quantitative live-cell experiments. Strikingly, we find that affinities and kinetics vary by orders of magnitude due to diacylglycerol side-chain composition. These differences are sufficient to explain differential recruitment of diacylglycerol binding proteins and, thus, differing downstream phosphorylation patterns. Our approach represents a generally applicable method for elucidating the biological function of single lipid species on subcellular scales in quantitative live-cell experiments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1912684117</identifier><identifier>PMID: 32213584</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Affinity ; Binding ; Biodiversity ; Biological Sciences ; Chains ; Composition ; Diglycerides ; Experiments ; Lipids ; Mathematical models ; Phosphorylation ; Physical Sciences ; Protein interaction ; Proteins ; Second messengers ; Species ; Species diversity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-04, Vol.117 (14), p.7729-7738</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Apr 7, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-7b4f687c12a0444430235f920644150fceded43e01e3349627919d5c1ae03faf3</citedby><cites>FETCH-LOGICAL-c509t-7b4f687c12a0444430235f920644150fceded43e01e3349627919d5c1ae03faf3</cites><orcidid>0000-0003-4375-3144 ; 0000-0002-5079-1109 ; 0000-0003-0670-5717 ; 0000-0001-6329-3910 ; 0000-0002-5895-6529 ; 0000-0001-5646-4750 ; 0000-0003-1430-4219 ; 0000-0002-7134-3110 ; 0000-0001-7314-5559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929718$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929718$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32213584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schuhmacher, Milena</creatorcontrib><creatorcontrib>Grasskamp, Andreas T.</creatorcontrib><creatorcontrib>Barahtjan, Pavel</creatorcontrib><creatorcontrib>Wagner, Nicolai</creatorcontrib><creatorcontrib>Lombardot, Benoit</creatorcontrib><creatorcontrib>Schuhmacher, Jan S.</creatorcontrib><creatorcontrib>Sala, Pia</creatorcontrib><creatorcontrib>Lohmann, Annett</creatorcontrib><creatorcontrib>Henry, Ian</creatorcontrib><creatorcontrib>Shevchenko, Andrej</creatorcontrib><creatorcontrib>Coskun, Ünal</creatorcontrib><creatorcontrib>Walter, Alexander M.</creatorcontrib><creatorcontrib>Nadler, André</creatorcontrib><title>Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Every cell produces thousands of distinct lipid species, but insight into how lipid chemical diversity contributes to biological signaling is lacking, particularly because of a scarcity of methods for quantitatively studying lipid function in living cells. Using the example of diacylglycerols, prominent second messengers, we here investigate whether lipid chemical diversity can provide a basis for cellular signal specification. We generated photo-caged lipid probes, which allow acute manipulation of distinct diacylglycerol species in the plasma membrane. Combining uncaging experiments with mathematical modeling, we were able to determine binding constants for diacylglycerol–protein interactions, and kinetic parameters for diacylglycerol transbilayer movement and turnover in quantitative live-cell experiments. Strikingly, we find that affinities and kinetics vary by orders of magnitude due to diacylglycerol side-chain composition. These differences are sufficient to explain differential recruitment of diacylglycerol binding proteins and, thus, differing downstream phosphorylation patterns. Our approach represents a generally applicable method for elucidating the biological function of single lipid species on subcellular scales in quantitative live-cell experiments.</description><subject>Affinity</subject><subject>Binding</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Chains</subject><subject>Composition</subject><subject>Diglycerides</subject><subject>Experiments</subject><subject>Lipids</subject><subject>Mathematical models</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Second messengers</subject><subject>Species</subject><subject>Species diversity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUuP0zAUhS0EYjoDa1YgS2zYZMavxPEGCY14SZXYwNpyneupq8QOdlIpv2D-No5aysMbS77fOdf3HoReUXJLieR3YzD5lirKmlZQKp-gDSWKVo1Q5CnaEMJk1QomrtB1zgdCiKpb8hxdccYor1uxQY9bf4TKQt_j3o--wzsf7R4Gn6e04ARHMH3GBqfYA44Od97YpX_oFwvlCWffFfXe-IBtHMaY_eRjwC4mvHrOvUln324JZvC2eIUOjylOUDTGOR-KBPIL9MyVTvDyfN-gH58-fr__Um2_ff56_2Fb2ZqoqZI74ZpWWsoMEeVwwnjtFCONELQmzkIHneBAKHAuVMOkoqqrLTVAuDOO36D3J99x3g3QWQhTMr0ekx9MWnQ0Xv9bCX6vH-JRSyoUY3UxeHc2SPHnDHnSZVfrrCZAnLNmvCyc0laSgr79Dz3EOYUy3kopyWpV80LdnSibYs4J3OUzlOg1ZL2GrP-EXBRv_p7hwv9OtQCvT8AhTzFd6qxRTEna8l9m8K-B</recordid><startdate>20200407</startdate><enddate>20200407</enddate><creator>Schuhmacher, Milena</creator><creator>Grasskamp, Andreas T.</creator><creator>Barahtjan, Pavel</creator><creator>Wagner, Nicolai</creator><creator>Lombardot, Benoit</creator><creator>Schuhmacher, Jan S.</creator><creator>Sala, Pia</creator><creator>Lohmann, Annett</creator><creator>Henry, Ian</creator><creator>Shevchenko, Andrej</creator><creator>Coskun, Ünal</creator><creator>Walter, Alexander M.</creator><creator>Nadler, André</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4375-3144</orcidid><orcidid>https://orcid.org/0000-0002-5079-1109</orcidid><orcidid>https://orcid.org/0000-0003-0670-5717</orcidid><orcidid>https://orcid.org/0000-0001-6329-3910</orcidid><orcidid>https://orcid.org/0000-0002-5895-6529</orcidid><orcidid>https://orcid.org/0000-0001-5646-4750</orcidid><orcidid>https://orcid.org/0000-0003-1430-4219</orcidid><orcidid>https://orcid.org/0000-0002-7134-3110</orcidid><orcidid>https://orcid.org/0000-0001-7314-5559</orcidid></search><sort><creationdate>20200407</creationdate><title>Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities</title><author>Schuhmacher, Milena ; Grasskamp, Andreas T. ; Barahtjan, Pavel ; Wagner, Nicolai ; Lombardot, Benoit ; Schuhmacher, Jan S. ; Sala, Pia ; Lohmann, Annett ; Henry, Ian ; Shevchenko, Andrej ; Coskun, Ünal ; Walter, Alexander M. ; Nadler, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-7b4f687c12a0444430235f920644150fceded43e01e3349627919d5c1ae03faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Binding</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Chains</topic><topic>Composition</topic><topic>Diglycerides</topic><topic>Experiments</topic><topic>Lipids</topic><topic>Mathematical models</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Second messengers</topic><topic>Species</topic><topic>Species diversity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuhmacher, Milena</creatorcontrib><creatorcontrib>Grasskamp, Andreas T.</creatorcontrib><creatorcontrib>Barahtjan, Pavel</creatorcontrib><creatorcontrib>Wagner, Nicolai</creatorcontrib><creatorcontrib>Lombardot, Benoit</creatorcontrib><creatorcontrib>Schuhmacher, Jan S.</creatorcontrib><creatorcontrib>Sala, Pia</creatorcontrib><creatorcontrib>Lohmann, Annett</creatorcontrib><creatorcontrib>Henry, Ian</creatorcontrib><creatorcontrib>Shevchenko, Andrej</creatorcontrib><creatorcontrib>Coskun, Ünal</creatorcontrib><creatorcontrib>Walter, Alexander M.</creatorcontrib><creatorcontrib>Nadler, André</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuhmacher, Milena</au><au>Grasskamp, Andreas T.</au><au>Barahtjan, Pavel</au><au>Wagner, Nicolai</au><au>Lombardot, Benoit</au><au>Schuhmacher, Jan S.</au><au>Sala, Pia</au><au>Lohmann, Annett</au><au>Henry, Ian</au><au>Shevchenko, Andrej</au><au>Coskun, Ünal</au><au>Walter, Alexander M.</au><au>Nadler, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-04-07</date><risdate>2020</risdate><volume>117</volume><issue>14</issue><spage>7729</spage><epage>7738</epage><pages>7729-7738</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Every cell produces thousands of distinct lipid species, but insight into how lipid chemical diversity contributes to biological signaling is lacking, particularly because of a scarcity of methods for quantitatively studying lipid function in living cells. Using the example of diacylglycerols, prominent second messengers, we here investigate whether lipid chemical diversity can provide a basis for cellular signal specification. We generated photo-caged lipid probes, which allow acute manipulation of distinct diacylglycerol species in the plasma membrane. Combining uncaging experiments with mathematical modeling, we were able to determine binding constants for diacylglycerol–protein interactions, and kinetic parameters for diacylglycerol transbilayer movement and turnover in quantitative live-cell experiments. Strikingly, we find that affinities and kinetics vary by orders of magnitude due to diacylglycerol side-chain composition. These differences are sufficient to explain differential recruitment of diacylglycerol binding proteins and, thus, differing downstream phosphorylation patterns. Our approach represents a generally applicable method for elucidating the biological function of single lipid species on subcellular scales in quantitative live-cell experiments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32213584</pmid><doi>10.1073/pnas.1912684117</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4375-3144</orcidid><orcidid>https://orcid.org/0000-0002-5079-1109</orcidid><orcidid>https://orcid.org/0000-0003-0670-5717</orcidid><orcidid>https://orcid.org/0000-0001-6329-3910</orcidid><orcidid>https://orcid.org/0000-0002-5895-6529</orcidid><orcidid>https://orcid.org/0000-0001-5646-4750</orcidid><orcidid>https://orcid.org/0000-0003-1430-4219</orcidid><orcidid>https://orcid.org/0000-0002-7134-3110</orcidid><orcidid>https://orcid.org/0000-0001-7314-5559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-04, Vol.117 (14), p.7729-7738
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7149225
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Affinity
Binding
Biodiversity
Biological Sciences
Chains
Composition
Diglycerides
Experiments
Lipids
Mathematical models
Phosphorylation
Physical Sciences
Protein interaction
Proteins
Second messengers
Species
Species diversity
title Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Live-cell%20lipid%20biochemistry%20reveals%20a%20role%20of%20diacylglycerol%20side-chain%20composition%20for%20cellular%20lipid%20dynamics%20and%20protein%20affinities&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schuhmacher,%20Milena&rft.date=2020-04-07&rft.volume=117&rft.issue=14&rft.spage=7729&rft.epage=7738&rft.pages=7729-7738&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1912684117&rft_dat=%3Cjstor_pubme%3E26929718%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389725953&rft_id=info:pmid/32213584&rft_jstor_id=26929718&rfr_iscdi=true