Molecular mechanism of the dual regulatory roles of ATP on the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase
Human NAD-dependent isocitrate dehydrogenase (NAD-IDH) is responsible for the catalytic conversion of isocitrate into α-ketoglutarate in the Krebs cycle. This enzyme exists as the α 2 βγ heterotetramer composed of the αβ and αγ heterodimers. Our previous biochemical data showed that the αγ heterodim...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-04, Vol.10 (1), p.6225-6225, Article 6225 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6225 |
---|---|
container_issue | 1 |
container_start_page | 6225 |
container_title | Scientific reports |
container_volume | 10 |
creator | Sun, Pengkai Bai, Tuya Ma, Tengfei Ding, Jianping |
description | Human NAD-dependent isocitrate dehydrogenase (NAD-IDH) is responsible for the catalytic conversion of isocitrate into α-ketoglutarate in the Krebs cycle. This enzyme exists as the α
2
βγ heterotetramer composed of the αβ and αγ heterodimers. Our previous biochemical data showed that the αγ heterodimer and the holoenzyme can be activated by low concentrations of ATP but inhibited by high concentrations of ATP; however, the molecular mechanism was unknown. Here, we report the crystal structures of the αγ heterodimer with ATP binding only to the allosteric site (α
Mg
γ
Mg+CIT+ATP
) and to both the allosteric site and the active site (α
Mg+ATP
γ
Mg+CIT+ATP
). Structural data show that ATP at low concentrations can mimic ADP to bind to the allosteric site, which stabilizes CIT binding and leads the enzyme to adopt an active conformation, revealing why the enzyme can be activated by low concentrations of ATP. On the other hand, at high concentrations ATP is competitive with NAD for binding to the catalytic site. In addition, our biochemical data show that high concentrations of ATP promote the formation of metal ion-ATP chelates. This reduces the concentration of free metal ion available for the catalytic reaction, and thus further inhibits the enzymatic activity. The combination of these two effects accounts for the inhibition of the enzyme at high concentrations of ATP. Taken together, our structural and biochemical data reveal the molecular mechanism for the dual regulatory roles of ATP on the αγ heterodimer of human NAD-IDH. |
doi_str_mv | 10.1038/s41598-020-63425-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7148312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388826973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-441a0c63cbdced5bfabb7bccf42e05151bb435361717485df457027b5de6d2c93</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EotXQF2CBLLFhE_A1TjZIo3KVymVR1pYvJ5NUiT3YCdKseCbEe_SZ8MyUUljghW35_87vc_Qj9JiS55Tw5kUWVLZNRRipai6YrOp76JQRISvGGbt_536CznK-ImVJ1graPkQn5VWpUn-Kvn-II7hlNAlP4HoThjzh2OG5B-wXM-IEm6LOMe1wKmjei-vLzziGA3P94_on7mGGFP0wQdrL_TKZgD-uX1UethA8hBkPObphTmYuttDvfIobCCbDI_SgM2OGs5tzhb68eX15_q66-PT2_fn6onJCibkSghriau6sd-Cl7Yy1yjrXCQZEUkmtFVzymiqqRCN9J6QiTFnpofbMtXyFXh59t4udoJiE0syot2mYTNrpaAb9txKGXm_iN62oaDhlxeDZjUGKXxfIs56G7GAcTYC4ZM140zSsbhUv6NN_0Ku4pFDGO1Cc0JaqQrEj5VLMOUF32wwleh-xPkasS8T6EHHZV-jJ3TFuS34HWgB-BHKRwgbSn7__Y_sLjP61Pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388301917</pqid></control><display><type>article</type><title>Molecular mechanism of the dual regulatory roles of ATP on the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Pengkai ; Bai, Tuya ; Ma, Tengfei ; Ding, Jianping</creator><creatorcontrib>Sun, Pengkai ; Bai, Tuya ; Ma, Tengfei ; Ding, Jianping</creatorcontrib><description>Human NAD-dependent isocitrate dehydrogenase (NAD-IDH) is responsible for the catalytic conversion of isocitrate into α-ketoglutarate in the Krebs cycle. This enzyme exists as the α
2
βγ heterotetramer composed of the αβ and αγ heterodimers. Our previous biochemical data showed that the αγ heterodimer and the holoenzyme can be activated by low concentrations of ATP but inhibited by high concentrations of ATP; however, the molecular mechanism was unknown. Here, we report the crystal structures of the αγ heterodimer with ATP binding only to the allosteric site (α
Mg
γ
Mg+CIT+ATP
) and to both the allosteric site and the active site (α
Mg+ATP
γ
Mg+CIT+ATP
). Structural data show that ATP at low concentrations can mimic ADP to bind to the allosteric site, which stabilizes CIT binding and leads the enzyme to adopt an active conformation, revealing why the enzyme can be activated by low concentrations of ATP. On the other hand, at high concentrations ATP is competitive with NAD for binding to the catalytic site. In addition, our biochemical data show that high concentrations of ATP promote the formation of metal ion-ATP chelates. This reduces the concentration of free metal ion available for the catalytic reaction, and thus further inhibits the enzymatic activity. The combination of these two effects accounts for the inhibition of the enzyme at high concentrations of ATP. Taken together, our structural and biochemical data reveal the molecular mechanism for the dual regulatory roles of ATP on the αγ heterodimer of human NAD-IDH.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-63425-6</identifier><identifier>PMID: 32277159</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/173 ; 631/535/1266 ; Adenosine diphosphate ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - metabolism ; Allosteric properties ; Allosteric Regulation ; Allosteric Site ; Biocatalysis ; Catalytic Domain ; Chelates ; Conformation ; Crystallography, X-Ray ; Dehydrogenase ; Dehydrogenases ; Enzymatic activity ; Enzyme Assays ; Enzymes ; Humanities and Social Sciences ; Humans ; Isocitrate dehydrogenase ; Isocitrate Dehydrogenase - metabolism ; Isocitrate Dehydrogenase - ultrastructure ; Ketoglutaric acid ; Kinetics ; Metal concentrations ; Metal ions ; Models, Molecular ; multidisciplinary ; NAD ; NAD - metabolism ; Protein Multimerization ; Protein Subunits - metabolism ; Science ; Science (multidisciplinary) ; Tricarboxylic acid cycle</subject><ispartof>Scientific reports, 2020-04, Vol.10 (1), p.6225-6225, Article 6225</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-441a0c63cbdced5bfabb7bccf42e05151bb435361717485df457027b5de6d2c93</citedby><cites>FETCH-LOGICAL-c474t-441a0c63cbdced5bfabb7bccf42e05151bb435361717485df457027b5de6d2c93</cites><orcidid>0000-0001-7029-7346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148312/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148312/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32277159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Pengkai</creatorcontrib><creatorcontrib>Bai, Tuya</creatorcontrib><creatorcontrib>Ma, Tengfei</creatorcontrib><creatorcontrib>Ding, Jianping</creatorcontrib><title>Molecular mechanism of the dual regulatory roles of ATP on the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Human NAD-dependent isocitrate dehydrogenase (NAD-IDH) is responsible for the catalytic conversion of isocitrate into α-ketoglutarate in the Krebs cycle. This enzyme exists as the α
2
βγ heterotetramer composed of the αβ and αγ heterodimers. Our previous biochemical data showed that the αγ heterodimer and the holoenzyme can be activated by low concentrations of ATP but inhibited by high concentrations of ATP; however, the molecular mechanism was unknown. Here, we report the crystal structures of the αγ heterodimer with ATP binding only to the allosteric site (α
Mg
γ
Mg+CIT+ATP
) and to both the allosteric site and the active site (α
Mg+ATP
γ
Mg+CIT+ATP
). Structural data show that ATP at low concentrations can mimic ADP to bind to the allosteric site, which stabilizes CIT binding and leads the enzyme to adopt an active conformation, revealing why the enzyme can be activated by low concentrations of ATP. On the other hand, at high concentrations ATP is competitive with NAD for binding to the catalytic site. In addition, our biochemical data show that high concentrations of ATP promote the formation of metal ion-ATP chelates. This reduces the concentration of free metal ion available for the catalytic reaction, and thus further inhibits the enzymatic activity. The combination of these two effects accounts for the inhibition of the enzyme at high concentrations of ATP. Taken together, our structural and biochemical data reveal the molecular mechanism for the dual regulatory roles of ATP on the αγ heterodimer of human NAD-IDH.</description><subject>631/45/173</subject><subject>631/535/1266</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Allosteric properties</subject><subject>Allosteric Regulation</subject><subject>Allosteric Site</subject><subject>Biocatalysis</subject><subject>Catalytic Domain</subject><subject>Chelates</subject><subject>Conformation</subject><subject>Crystallography, X-Ray</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Enzymatic activity</subject><subject>Enzyme Assays</subject><subject>Enzymes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Isocitrate dehydrogenase</subject><subject>Isocitrate Dehydrogenase - metabolism</subject><subject>Isocitrate Dehydrogenase - ultrastructure</subject><subject>Ketoglutaric acid</subject><subject>Kinetics</subject><subject>Metal concentrations</subject><subject>Metal ions</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>NAD</subject><subject>NAD - metabolism</subject><subject>Protein Multimerization</subject><subject>Protein Subunits - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tricarboxylic acid cycle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1DAUhi0EotXQF2CBLLFhE_A1TjZIo3KVymVR1pYvJ5NUiT3YCdKseCbEe_SZ8MyUUljghW35_87vc_Qj9JiS55Tw5kUWVLZNRRipai6YrOp76JQRISvGGbt_536CznK-ImVJ1graPkQn5VWpUn-Kvn-II7hlNAlP4HoThjzh2OG5B-wXM-IEm6LOMe1wKmjei-vLzziGA3P94_on7mGGFP0wQdrL_TKZgD-uX1UethA8hBkPObphTmYuttDvfIobCCbDI_SgM2OGs5tzhb68eX15_q66-PT2_fn6onJCibkSghriau6sd-Cl7Yy1yjrXCQZEUkmtFVzymiqqRCN9J6QiTFnpofbMtXyFXh59t4udoJiE0syot2mYTNrpaAb9txKGXm_iN62oaDhlxeDZjUGKXxfIs56G7GAcTYC4ZM140zSsbhUv6NN_0Ku4pFDGO1Cc0JaqQrEj5VLMOUF32wwleh-xPkasS8T6EHHZV-jJ3TFuS34HWgB-BHKRwgbSn7__Y_sLjP61Pg</recordid><startdate>20200410</startdate><enddate>20200410</enddate><creator>Sun, Pengkai</creator><creator>Bai, Tuya</creator><creator>Ma, Tengfei</creator><creator>Ding, Jianping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7029-7346</orcidid></search><sort><creationdate>20200410</creationdate><title>Molecular mechanism of the dual regulatory roles of ATP on the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase</title><author>Sun, Pengkai ; Bai, Tuya ; Ma, Tengfei ; Ding, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-441a0c63cbdced5bfabb7bccf42e05151bb435361717485df457027b5de6d2c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/45/173</topic><topic>631/535/1266</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Allosteric properties</topic><topic>Allosteric Regulation</topic><topic>Allosteric Site</topic><topic>Biocatalysis</topic><topic>Catalytic Domain</topic><topic>Chelates</topic><topic>Conformation</topic><topic>Crystallography, X-Ray</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Enzymatic activity</topic><topic>Enzyme Assays</topic><topic>Enzymes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Isocitrate dehydrogenase</topic><topic>Isocitrate Dehydrogenase - metabolism</topic><topic>Isocitrate Dehydrogenase - ultrastructure</topic><topic>Ketoglutaric acid</topic><topic>Kinetics</topic><topic>Metal concentrations</topic><topic>Metal ions</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>NAD</topic><topic>NAD - metabolism</topic><topic>Protein Multimerization</topic><topic>Protein Subunits - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Pengkai</creatorcontrib><creatorcontrib>Bai, Tuya</creatorcontrib><creatorcontrib>Ma, Tengfei</creatorcontrib><creatorcontrib>Ding, Jianping</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Pengkai</au><au>Bai, Tuya</au><au>Ma, Tengfei</au><au>Ding, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanism of the dual regulatory roles of ATP on the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-04-10</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>6225</spage><epage>6225</epage><pages>6225-6225</pages><artnum>6225</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Human NAD-dependent isocitrate dehydrogenase (NAD-IDH) is responsible for the catalytic conversion of isocitrate into α-ketoglutarate in the Krebs cycle. This enzyme exists as the α
2
βγ heterotetramer composed of the αβ and αγ heterodimers. Our previous biochemical data showed that the αγ heterodimer and the holoenzyme can be activated by low concentrations of ATP but inhibited by high concentrations of ATP; however, the molecular mechanism was unknown. Here, we report the crystal structures of the αγ heterodimer with ATP binding only to the allosteric site (α
Mg
γ
Mg+CIT+ATP
) and to both the allosteric site and the active site (α
Mg+ATP
γ
Mg+CIT+ATP
). Structural data show that ATP at low concentrations can mimic ADP to bind to the allosteric site, which stabilizes CIT binding and leads the enzyme to adopt an active conformation, revealing why the enzyme can be activated by low concentrations of ATP. On the other hand, at high concentrations ATP is competitive with NAD for binding to the catalytic site. In addition, our biochemical data show that high concentrations of ATP promote the formation of metal ion-ATP chelates. This reduces the concentration of free metal ion available for the catalytic reaction, and thus further inhibits the enzymatic activity. The combination of these two effects accounts for the inhibition of the enzyme at high concentrations of ATP. Taken together, our structural and biochemical data reveal the molecular mechanism for the dual regulatory roles of ATP on the αγ heterodimer of human NAD-IDH.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32277159</pmid><doi>10.1038/s41598-020-63425-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7029-7346</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-04, Vol.10 (1), p.6225-6225, Article 6225 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7148312 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/45/173 631/535/1266 Adenosine diphosphate Adenosine Diphosphate - metabolism Adenosine Triphosphate - metabolism Allosteric properties Allosteric Regulation Allosteric Site Biocatalysis Catalytic Domain Chelates Conformation Crystallography, X-Ray Dehydrogenase Dehydrogenases Enzymatic activity Enzyme Assays Enzymes Humanities and Social Sciences Humans Isocitrate dehydrogenase Isocitrate Dehydrogenase - metabolism Isocitrate Dehydrogenase - ultrastructure Ketoglutaric acid Kinetics Metal concentrations Metal ions Models, Molecular multidisciplinary NAD NAD - metabolism Protein Multimerization Protein Subunits - metabolism Science Science (multidisciplinary) Tricarboxylic acid cycle |
title | Molecular mechanism of the dual regulatory roles of ATP on the αγ heterodimer of human NAD-dependent isocitrate dehydrogenase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanism%20of%20the%20dual%20regulatory%20roles%20of%20ATP%20on%20the%20%CE%B1%CE%B3%20heterodimer%20of%20human%20NAD-dependent%20isocitrate%20dehydrogenase&rft.jtitle=Scientific%20reports&rft.au=Sun,%20Pengkai&rft.date=2020-04-10&rft.volume=10&rft.issue=1&rft.spage=6225&rft.epage=6225&rft.pages=6225-6225&rft.artnum=6225&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-63425-6&rft_dat=%3Cproquest_pubme%3E2388826973%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388301917&rft_id=info:pmid/32277159&rfr_iscdi=true |