Trophic strategy and bleaching resistance in reef-building corals

Ocean warming increases the incidence of coral bleaching, which reduces or eliminates the nutrition corals receive from their algal symbionts, often resulting in widespread mortality. In contrast to extensive knowledge on the thermal tolerance of coral-associated symbionts, the role of the coral hos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2020-04, Vol.6 (15), p.eaaz5443-eaaz5443, Article 5443
Hauptverfasser: Conti-Jerpe, Inga E., Thompson, Philip D., Wong, Cheong Wai Martin, Oliveira, Nara L., Duprey, Nicolas N., Moynihan, Molly A., Baker, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ocean warming increases the incidence of coral bleaching, which reduces or eliminates the nutrition corals receive from their algal symbionts, often resulting in widespread mortality. In contrast to extensive knowledge on the thermal tolerance of coral-associated symbionts, the role of the coral host in bleaching patterns across species is poorly understood. Here, we applied a Bayesian analysis of carbon and nitrogen stable isotope data to determine the trophic niche overlap between corals and their symbionts and propose benchmark values that define autotrophy, heterotrophy, and mixotrophy. The amount of overlap between coral and symbiont niche was negatively correlated with polyp size and bleaching resistance. Our results indicated that as oceans warm, autotrophic corals lose their competitive advantage and thus are the first to disappear from coral reefs.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.aaz5443