Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs

In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2020-04, Vol.135 (15), p.1219-1231
Hauptverfasser: Six, Emmanuelle, Guilloux, Agathe, Denis, Adeline, Lecoules, Arnaud, Magnani, Alessandra, Vilette, Romain, Male, Frances, Cagnard, Nicolas, Delville, Marianne, Magrin, Elisa, Caccavelli, Laure, Roudaut, Cécile, Plantier, Clemence, Sobrino, Steicy, Gregg, John, Nobles, Christopher L., Everett, John K., Hacein-Bey-Abina, Salima, Galy, Anne, Fischer, Alain, Thrasher, Adrian J., André, Isabelle, Cavazzana, Marina, Bushman, Frederic D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1231
container_issue 15
container_start_page 1219
container_title Blood
container_volume 135
creator Six, Emmanuelle
Guilloux, Agathe
Denis, Adeline
Lecoules, Arnaud
Magnani, Alessandra
Vilette, Romain
Male, Frances
Cagnard, Nicolas
Delville, Marianne
Magrin, Elisa
Caccavelli, Laure
Roudaut, Cécile
Plantier, Clemence
Sobrino, Steicy
Gregg, John
Nobles, Christopher L.
Everett, John K.
Hacein-Bey-Abina, Salima
Galy, Anne
Fischer, Alain
Thrasher, Adrian J.
André, Isabelle
Cavazzana, Marina
Bushman, Frederic D.
description In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or β hemoglobinopathies. We found that the estimated minimum number of active, repopulating HSPCs (which ranged from 2000 to 50 000) was correlated with the number of HSPCs per kilogram infused. We sought to quantify the lineage output and dynamics of gene-modified clones; this is usually challenging because of sparse sampling of the various cell types during the analytical procedure, contamination during cell isolation, and different levels of vector marking in the various lineages. We therefore measured the residual contamination and corrected our statistical models accordingly to provide a rigorous analysis of the HSPC lineage output. A cluster analysis of the HSPC lineage output highlighted the existence of several stable, distinct differentiation programs, including myeloid-dominant, lymphoid-dominant, and balanced cell subsets. Our study evidenced the heterogeneous nature of the cell lineage output from HSPCs and provided methods for analyzing these complex data. •In the context of gene therapy, the estimated number of active, repopulating HSPCs was correlated with the number of HSPCs per kilogram infused.•An analysis of human HSPC clonal lineage outputs highlighted the presence of myeloid-dominant, lymphoid-dominant, and balanced cell subsets. [Display omitted]
doi_str_mv 10.1182/blood.2019002350
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7146019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120621152</els_id><sourcerecordid>2353582031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-a95ec1a5be2479dc17bd2f8652d0df48d87c38976a17df1219363253e60f6c1f3</originalsourceid><addsrcrecordid>eNp1kc2PFCEQxYnRuLOrd0-Gox56LaA_PZhsJu5HMokXPRMGimm0u2mB6WT-exln3dVNPJGifu9B1SPkDYNLxlr-YTt4by45sA6AiwqekRWreFvkCp6TFQDURdk17Iycx_gdgJWCVy_JmeBQQlXWKzKsBz-pgaag9A837aib6A4npKnHoOYDnVVyOKVIAy6ohkgVNW7BEF06UG9pvx_VRHscVfKzd5iczoC1GLLKZbGf6Bz8LqgxviIvbLbA1_fnBfl2_fnr-rbYfLm5W19tCl22LBWqq1AzVW2Rl01nNGu2htu2rrgBY8vWtI0WbdfUijXGMs46Uee5BNZga82suCCfTr7zfjui0fknQQ1yDm5U4SC9cvLfzuR6ufOLbFhZ52Vmg_cng_6J7PZqI493IHhXibpdWGbf3T8W_M89xiRHFzUOg5rQ76PMuYiq5SCOKJxQHXyMAe2DNwN5DFT-DlQ-Bpolb_8e5UHwJ8EMfDwBmBe6OAwy6hyYRuMC6iSNd_93_wXXx7KT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353582031</pqid></control><display><type>article</type><title>Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Six, Emmanuelle ; Guilloux, Agathe ; Denis, Adeline ; Lecoules, Arnaud ; Magnani, Alessandra ; Vilette, Romain ; Male, Frances ; Cagnard, Nicolas ; Delville, Marianne ; Magrin, Elisa ; Caccavelli, Laure ; Roudaut, Cécile ; Plantier, Clemence ; Sobrino, Steicy ; Gregg, John ; Nobles, Christopher L. ; Everett, John K. ; Hacein-Bey-Abina, Salima ; Galy, Anne ; Fischer, Alain ; Thrasher, Adrian J. ; André, Isabelle ; Cavazzana, Marina ; Bushman, Frederic D.</creator><creatorcontrib>Six, Emmanuelle ; Guilloux, Agathe ; Denis, Adeline ; Lecoules, Arnaud ; Magnani, Alessandra ; Vilette, Romain ; Male, Frances ; Cagnard, Nicolas ; Delville, Marianne ; Magrin, Elisa ; Caccavelli, Laure ; Roudaut, Cécile ; Plantier, Clemence ; Sobrino, Steicy ; Gregg, John ; Nobles, Christopher L. ; Everett, John K. ; Hacein-Bey-Abina, Salima ; Galy, Anne ; Fischer, Alain ; Thrasher, Adrian J. ; André, Isabelle ; Cavazzana, Marina ; Bushman, Frederic D.</creatorcontrib><description>In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or β hemoglobinopathies. We found that the estimated minimum number of active, repopulating HSPCs (which ranged from 2000 to 50 000) was correlated with the number of HSPCs per kilogram infused. We sought to quantify the lineage output and dynamics of gene-modified clones; this is usually challenging because of sparse sampling of the various cell types during the analytical procedure, contamination during cell isolation, and different levels of vector marking in the various lineages. We therefore measured the residual contamination and corrected our statistical models accordingly to provide a rigorous analysis of the HSPC lineage output. A cluster analysis of the HSPC lineage output highlighted the existence of several stable, distinct differentiation programs, including myeloid-dominant, lymphoid-dominant, and balanced cell subsets. Our study evidenced the heterogeneous nature of the cell lineage output from HSPCs and provided methods for analyzing these complex data. •In the context of gene therapy, the estimated number of active, repopulating HSPCs was correlated with the number of HSPCs per kilogram infused.•An analysis of human HSPC clonal lineage outputs highlighted the presence of myeloid-dominant, lymphoid-dominant, and balanced cell subsets. [Display omitted]</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.2019002350</identifier><identifier>PMID: 32040546</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biotechnology ; Cell Differentiation ; Cell Tracking ; Clone Cells - cytology ; Clone Cells - metabolism ; Gene Transfer Techniques ; Genetic Therapy - methods ; Genetic Vectors - genetics ; Hematopoiesis and Stem Cells ; Hematopoietic Stem Cell Transplantation - methods ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Hemoglobinopathies - genetics ; Hemoglobinopathies - therapy ; Humans ; Immunology ; Life Sciences ; Wiskott-Aldrich Syndrome - genetics ; Wiskott-Aldrich Syndrome - therapy</subject><ispartof>Blood, 2020-04, Vol.135 (15), p.1219-1231</ispartof><rights>2020 American Society of Hematology</rights><rights>2020 by The American Society of Hematology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 by The American Society of Hematology 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-a95ec1a5be2479dc17bd2f8652d0df48d87c38976a17df1219363253e60f6c1f3</citedby><cites>FETCH-LOGICAL-c481t-a95ec1a5be2479dc17bd2f8652d0df48d87c38976a17df1219363253e60f6c1f3</cites><orcidid>0000-0002-0674-9288 ; 0000-0003-4740-4056 ; 0000-0001-7806-0968 ; 0000-0002-0264-0891 ; 0000-0002-3905-9910 ; 0000-0003-0473-1970 ; 0000-0002-9585-2307 ; 0000-0002-0153-4392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32040546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-03295368$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Six, Emmanuelle</creatorcontrib><creatorcontrib>Guilloux, Agathe</creatorcontrib><creatorcontrib>Denis, Adeline</creatorcontrib><creatorcontrib>Lecoules, Arnaud</creatorcontrib><creatorcontrib>Magnani, Alessandra</creatorcontrib><creatorcontrib>Vilette, Romain</creatorcontrib><creatorcontrib>Male, Frances</creatorcontrib><creatorcontrib>Cagnard, Nicolas</creatorcontrib><creatorcontrib>Delville, Marianne</creatorcontrib><creatorcontrib>Magrin, Elisa</creatorcontrib><creatorcontrib>Caccavelli, Laure</creatorcontrib><creatorcontrib>Roudaut, Cécile</creatorcontrib><creatorcontrib>Plantier, Clemence</creatorcontrib><creatorcontrib>Sobrino, Steicy</creatorcontrib><creatorcontrib>Gregg, John</creatorcontrib><creatorcontrib>Nobles, Christopher L.</creatorcontrib><creatorcontrib>Everett, John K.</creatorcontrib><creatorcontrib>Hacein-Bey-Abina, Salima</creatorcontrib><creatorcontrib>Galy, Anne</creatorcontrib><creatorcontrib>Fischer, Alain</creatorcontrib><creatorcontrib>Thrasher, Adrian J.</creatorcontrib><creatorcontrib>André, Isabelle</creatorcontrib><creatorcontrib>Cavazzana, Marina</creatorcontrib><creatorcontrib>Bushman, Frederic D.</creatorcontrib><title>Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs</title><title>Blood</title><addtitle>Blood</addtitle><description>In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or β hemoglobinopathies. We found that the estimated minimum number of active, repopulating HSPCs (which ranged from 2000 to 50 000) was correlated with the number of HSPCs per kilogram infused. We sought to quantify the lineage output and dynamics of gene-modified clones; this is usually challenging because of sparse sampling of the various cell types during the analytical procedure, contamination during cell isolation, and different levels of vector marking in the various lineages. We therefore measured the residual contamination and corrected our statistical models accordingly to provide a rigorous analysis of the HSPC lineage output. A cluster analysis of the HSPC lineage output highlighted the existence of several stable, distinct differentiation programs, including myeloid-dominant, lymphoid-dominant, and balanced cell subsets. Our study evidenced the heterogeneous nature of the cell lineage output from HSPCs and provided methods for analyzing these complex data. •In the context of gene therapy, the estimated number of active, repopulating HSPCs was correlated with the number of HSPCs per kilogram infused.•An analysis of human HSPC clonal lineage outputs highlighted the presence of myeloid-dominant, lymphoid-dominant, and balanced cell subsets. [Display omitted]</description><subject>Biotechnology</subject><subject>Cell Differentiation</subject><subject>Cell Tracking</subject><subject>Clone Cells - cytology</subject><subject>Clone Cells - metabolism</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors - genetics</subject><subject>Hematopoiesis and Stem Cells</subject><subject>Hematopoietic Stem Cell Transplantation - methods</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hemoglobinopathies - genetics</subject><subject>Hemoglobinopathies - therapy</subject><subject>Humans</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Wiskott-Aldrich Syndrome - genetics</subject><subject>Wiskott-Aldrich Syndrome - therapy</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2PFCEQxYnRuLOrd0-Gox56LaA_PZhsJu5HMokXPRMGimm0u2mB6WT-exln3dVNPJGifu9B1SPkDYNLxlr-YTt4by45sA6AiwqekRWreFvkCp6TFQDURdk17Iycx_gdgJWCVy_JmeBQQlXWKzKsBz-pgaag9A837aib6A4npKnHoOYDnVVyOKVIAy6ohkgVNW7BEF06UG9pvx_VRHscVfKzd5iczoC1GLLKZbGf6Bz8LqgxviIvbLbA1_fnBfl2_fnr-rbYfLm5W19tCl22LBWqq1AzVW2Rl01nNGu2htu2rrgBY8vWtI0WbdfUijXGMs46Uee5BNZga82suCCfTr7zfjui0fknQQ1yDm5U4SC9cvLfzuR6ufOLbFhZ52Vmg_cng_6J7PZqI493IHhXibpdWGbf3T8W_M89xiRHFzUOg5rQ76PMuYiq5SCOKJxQHXyMAe2DNwN5DFT-DlQ-Bpolb_8e5UHwJ8EMfDwBmBe6OAwy6hyYRuMC6iSNd_93_wXXx7KT</recordid><startdate>20200409</startdate><enddate>20200409</enddate><creator>Six, Emmanuelle</creator><creator>Guilloux, Agathe</creator><creator>Denis, Adeline</creator><creator>Lecoules, Arnaud</creator><creator>Magnani, Alessandra</creator><creator>Vilette, Romain</creator><creator>Male, Frances</creator><creator>Cagnard, Nicolas</creator><creator>Delville, Marianne</creator><creator>Magrin, Elisa</creator><creator>Caccavelli, Laure</creator><creator>Roudaut, Cécile</creator><creator>Plantier, Clemence</creator><creator>Sobrino, Steicy</creator><creator>Gregg, John</creator><creator>Nobles, Christopher L.</creator><creator>Everett, John K.</creator><creator>Hacein-Bey-Abina, Salima</creator><creator>Galy, Anne</creator><creator>Fischer, Alain</creator><creator>Thrasher, Adrian J.</creator><creator>André, Isabelle</creator><creator>Cavazzana, Marina</creator><creator>Bushman, Frederic D.</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0674-9288</orcidid><orcidid>https://orcid.org/0000-0003-4740-4056</orcidid><orcidid>https://orcid.org/0000-0001-7806-0968</orcidid><orcidid>https://orcid.org/0000-0002-0264-0891</orcidid><orcidid>https://orcid.org/0000-0002-3905-9910</orcidid><orcidid>https://orcid.org/0000-0003-0473-1970</orcidid><orcidid>https://orcid.org/0000-0002-9585-2307</orcidid><orcidid>https://orcid.org/0000-0002-0153-4392</orcidid></search><sort><creationdate>20200409</creationdate><title>Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs</title><author>Six, Emmanuelle ; Guilloux, Agathe ; Denis, Adeline ; Lecoules, Arnaud ; Magnani, Alessandra ; Vilette, Romain ; Male, Frances ; Cagnard, Nicolas ; Delville, Marianne ; Magrin, Elisa ; Caccavelli, Laure ; Roudaut, Cécile ; Plantier, Clemence ; Sobrino, Steicy ; Gregg, John ; Nobles, Christopher L. ; Everett, John K. ; Hacein-Bey-Abina, Salima ; Galy, Anne ; Fischer, Alain ; Thrasher, Adrian J. ; André, Isabelle ; Cavazzana, Marina ; Bushman, Frederic D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-a95ec1a5be2479dc17bd2f8652d0df48d87c38976a17df1219363253e60f6c1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biotechnology</topic><topic>Cell Differentiation</topic><topic>Cell Tracking</topic><topic>Clone Cells - cytology</topic><topic>Clone Cells - metabolism</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors - genetics</topic><topic>Hematopoiesis and Stem Cells</topic><topic>Hematopoietic Stem Cell Transplantation - methods</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hemoglobinopathies - genetics</topic><topic>Hemoglobinopathies - therapy</topic><topic>Humans</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Wiskott-Aldrich Syndrome - genetics</topic><topic>Wiskott-Aldrich Syndrome - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Six, Emmanuelle</creatorcontrib><creatorcontrib>Guilloux, Agathe</creatorcontrib><creatorcontrib>Denis, Adeline</creatorcontrib><creatorcontrib>Lecoules, Arnaud</creatorcontrib><creatorcontrib>Magnani, Alessandra</creatorcontrib><creatorcontrib>Vilette, Romain</creatorcontrib><creatorcontrib>Male, Frances</creatorcontrib><creatorcontrib>Cagnard, Nicolas</creatorcontrib><creatorcontrib>Delville, Marianne</creatorcontrib><creatorcontrib>Magrin, Elisa</creatorcontrib><creatorcontrib>Caccavelli, Laure</creatorcontrib><creatorcontrib>Roudaut, Cécile</creatorcontrib><creatorcontrib>Plantier, Clemence</creatorcontrib><creatorcontrib>Sobrino, Steicy</creatorcontrib><creatorcontrib>Gregg, John</creatorcontrib><creatorcontrib>Nobles, Christopher L.</creatorcontrib><creatorcontrib>Everett, John K.</creatorcontrib><creatorcontrib>Hacein-Bey-Abina, Salima</creatorcontrib><creatorcontrib>Galy, Anne</creatorcontrib><creatorcontrib>Fischer, Alain</creatorcontrib><creatorcontrib>Thrasher, Adrian J.</creatorcontrib><creatorcontrib>André, Isabelle</creatorcontrib><creatorcontrib>Cavazzana, Marina</creatorcontrib><creatorcontrib>Bushman, Frederic D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Six, Emmanuelle</au><au>Guilloux, Agathe</au><au>Denis, Adeline</au><au>Lecoules, Arnaud</au><au>Magnani, Alessandra</au><au>Vilette, Romain</au><au>Male, Frances</au><au>Cagnard, Nicolas</au><au>Delville, Marianne</au><au>Magrin, Elisa</au><au>Caccavelli, Laure</au><au>Roudaut, Cécile</au><au>Plantier, Clemence</au><au>Sobrino, Steicy</au><au>Gregg, John</au><au>Nobles, Christopher L.</au><au>Everett, John K.</au><au>Hacein-Bey-Abina, Salima</au><au>Galy, Anne</au><au>Fischer, Alain</au><au>Thrasher, Adrian J.</au><au>André, Isabelle</au><au>Cavazzana, Marina</au><au>Bushman, Frederic D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2020-04-09</date><risdate>2020</risdate><volume>135</volume><issue>15</issue><spage>1219</spage><epage>1231</epage><pages>1219-1231</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or β hemoglobinopathies. We found that the estimated minimum number of active, repopulating HSPCs (which ranged from 2000 to 50 000) was correlated with the number of HSPCs per kilogram infused. We sought to quantify the lineage output and dynamics of gene-modified clones; this is usually challenging because of sparse sampling of the various cell types during the analytical procedure, contamination during cell isolation, and different levels of vector marking in the various lineages. We therefore measured the residual contamination and corrected our statistical models accordingly to provide a rigorous analysis of the HSPC lineage output. A cluster analysis of the HSPC lineage output highlighted the existence of several stable, distinct differentiation programs, including myeloid-dominant, lymphoid-dominant, and balanced cell subsets. Our study evidenced the heterogeneous nature of the cell lineage output from HSPCs and provided methods for analyzing these complex data. •In the context of gene therapy, the estimated number of active, repopulating HSPCs was correlated with the number of HSPCs per kilogram infused.•An analysis of human HSPC clonal lineage outputs highlighted the presence of myeloid-dominant, lymphoid-dominant, and balanced cell subsets. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32040546</pmid><doi>10.1182/blood.2019002350</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0674-9288</orcidid><orcidid>https://orcid.org/0000-0003-4740-4056</orcidid><orcidid>https://orcid.org/0000-0001-7806-0968</orcidid><orcidid>https://orcid.org/0000-0002-0264-0891</orcidid><orcidid>https://orcid.org/0000-0002-3905-9910</orcidid><orcidid>https://orcid.org/0000-0003-0473-1970</orcidid><orcidid>https://orcid.org/0000-0002-9585-2307</orcidid><orcidid>https://orcid.org/0000-0002-0153-4392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2020-04, Vol.135 (15), p.1219-1231
issn 0006-4971
1528-0020
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7146019
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Biotechnology
Cell Differentiation
Cell Tracking
Clone Cells - cytology
Clone Cells - metabolism
Gene Transfer Techniques
Genetic Therapy - methods
Genetic Vectors - genetics
Hematopoiesis and Stem Cells
Hematopoietic Stem Cell Transplantation - methods
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Hemoglobinopathies - genetics
Hemoglobinopathies - therapy
Humans
Immunology
Life Sciences
Wiskott-Aldrich Syndrome - genetics
Wiskott-Aldrich Syndrome - therapy
title Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clonal%20tracking%20in%20gene%20therapy%20patients%20reveals%20a%20diversity%20of%20human%20hematopoietic%20differentiation%20programs&rft.jtitle=Blood&rft.au=Six,%20Emmanuelle&rft.date=2020-04-09&rft.volume=135&rft.issue=15&rft.spage=1219&rft.epage=1231&rft.pages=1219-1231&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.2019002350&rft_dat=%3Cproquest_pubme%3E2353582031%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353582031&rft_id=info:pmid/32040546&rft_els_id=S0006497120621152&rfr_iscdi=true