Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast

Cytosolic mRNA translation is subject to global and mRNA-specific controls. Phosphorylation of the translation initiation factor eIF2α anchors a reversible regulatory switch that represses cytosolic translation globally. The stress-responsive GCN2 kinase is the only known kinase for eIF2α serine 56...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2020-04, Vol.32 (4), p.1161-1178
Hauptverfasser: Lokdarshi, Ansul, Guan, Ju, Urquidi Camacho, Ricardo A, Cho, Sung Ki, Morgan, Philip W, Leonard, Madison, Shimono, Masaki, Day, Brad, von Arnim, Albrecht G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1178
container_issue 4
container_start_page 1161
container_title The Plant cell
container_volume 32
creator Lokdarshi, Ansul
Guan, Ju
Urquidi Camacho, Ricardo A
Cho, Sung Ki
Morgan, Philip W
Leonard, Madison
Shimono, Masaki
Day, Brad
von Arnim, Albrecht G
description Cytosolic mRNA translation is subject to global and mRNA-specific controls. Phosphorylation of the translation initiation factor eIF2α anchors a reversible regulatory switch that represses cytosolic translation globally. The stress-responsive GCN2 kinase is the only known kinase for eIF2α serine 56 in Arabidopsis ( ). Here, we show that conditions that generate reactive oxygen species (ROS) in the chloroplast, including dark-light transitions, high light, and the herbicide methyl viologen, rapidly activated GCN2 kinase, whereas mitochondrial and endoplasmic reticulum stress did not. GCN2 activation was light dependent and mitigated by photosynthesis inhibitors and ROS quenchers. Accordingly, the seedling growth of multiple Arabidopsis mutants was retarded under excess light conditions, implicating the GCN2-eIF2α pathway in responses to light and associated ROS. Once activated, GCN2 kinase preferentially suppressed the ribosome loading of mRNAs for functions such as mitochondrial ATP synthesis, the chloroplast thylakoids, vesicle trafficking, and translation. The mutant overaccumulated transcripts functionally related to abiotic stress, including oxidative stress, as well as innate immune responses. Accordingly, displayed defects in immune priming by the fungal elicitor, chitin. Therefore, we provide evidence that reactive oxygen species produced by the photosynthetic apparatus help activate the highly conserved GCN2 kinase, leading to eIF2α phosphorylation and thus affecting the status of the cytosolic protein synthesis apparatus.
doi_str_mv 10.1105/tpc.19.00751
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7145473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32079667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-fe26edec4b9c88f0d2f140d99c700ee1725462a1b7fd00ee6ed56f1daf6b60723</originalsourceid><addsrcrecordid>eNpVkEtPAjEUhRujEUR3rk1_gIO3nUeZjQkhiEYiiWLirimddqgZZiZtIfLvLaBEV_d1zneTg9A1gT4hkN75VvZJ3gdgKTlBXZLGNKL54OM09JBAlGQp6aAL5z4BgDCSn6NOTIHlWca6yE1NufR4KL3ZCK8c9kuF51bUrhLeNLWo8Ksq12Fo7BY_m1o4hSejF4o3RoST2BkVnn1tS1Xjt1ZJEyDjlaiDvS6xts1qzxwtq8Y2bSWcv0RnWlROXf3UHnp_GM9Hj9F0NnkaDaeRTFLwkVY0U4WSySKXg4GGgmqSQJHnkgEoRRhNk4wKsmC62C2COM00KYTOFhkwGvfQ_YHbrhcrVUhVeysq3lqzEnbLG2H4_0ttlrxsNpyRJE1YHAC3B4C0jXNW6aOXAN-Fz0P4nOR8H36Q3_z9dxT_ph1_A8YAg9M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lokdarshi, Ansul ; Guan, Ju ; Urquidi Camacho, Ricardo A ; Cho, Sung Ki ; Morgan, Philip W ; Leonard, Madison ; Shimono, Masaki ; Day, Brad ; von Arnim, Albrecht G</creator><creatorcontrib>Lokdarshi, Ansul ; Guan, Ju ; Urquidi Camacho, Ricardo A ; Cho, Sung Ki ; Morgan, Philip W ; Leonard, Madison ; Shimono, Masaki ; Day, Brad ; von Arnim, Albrecht G</creatorcontrib><description>Cytosolic mRNA translation is subject to global and mRNA-specific controls. Phosphorylation of the translation initiation factor eIF2α anchors a reversible regulatory switch that represses cytosolic translation globally. The stress-responsive GCN2 kinase is the only known kinase for eIF2α serine 56 in Arabidopsis ( ). Here, we show that conditions that generate reactive oxygen species (ROS) in the chloroplast, including dark-light transitions, high light, and the herbicide methyl viologen, rapidly activated GCN2 kinase, whereas mitochondrial and endoplasmic reticulum stress did not. GCN2 activation was light dependent and mitigated by photosynthesis inhibitors and ROS quenchers. Accordingly, the seedling growth of multiple Arabidopsis mutants was retarded under excess light conditions, implicating the GCN2-eIF2α pathway in responses to light and associated ROS. Once activated, GCN2 kinase preferentially suppressed the ribosome loading of mRNAs for functions such as mitochondrial ATP synthesis, the chloroplast thylakoids, vesicle trafficking, and translation. The mutant overaccumulated transcripts functionally related to abiotic stress, including oxidative stress, as well as innate immune responses. Accordingly, displayed defects in immune priming by the fungal elicitor, chitin. Therefore, we provide evidence that reactive oxygen species produced by the photosynthetic apparatus help activate the highly conserved GCN2 kinase, leading to eIF2α phosphorylation and thus affecting the status of the cytosolic protein synthesis apparatus.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.19.00751</identifier><identifier>PMID: 32079667</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Arabidopsis - enzymology ; Arabidopsis - radiation effects ; Arabidopsis Proteins - metabolism ; Chitin - metabolism ; Chloroplasts - metabolism ; Chloroplasts - radiation effects ; Eukaryotic Initiation Factor-2 - metabolism ; Gene Ontology ; Herbicides - toxicity ; Hydrogen Peroxide - pharmacology ; Light ; Mutation - genetics ; Phosphorylation - radiation effects ; Photosynthesis - drug effects ; Protein Biosynthesis - radiation effects ; Protein Kinases - metabolism ; Reactive Oxygen Species - metabolism ; Ribosomes - drug effects ; Ribosomes - metabolism ; Ribosomes - radiation effects ; Seedlings - drug effects ; Seedlings - growth &amp; development ; Seedlings - radiation effects ; Transcriptome - genetics</subject><ispartof>The Plant cell, 2020-04, Vol.32 (4), p.1161-1178</ispartof><rights>2020 American Society of Plant Biologists. All rights reserved.</rights><rights>2020 American Society of Plant Biologists. All rights reserved. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-fe26edec4b9c88f0d2f140d99c700ee1725462a1b7fd00ee6ed56f1daf6b60723</citedby><orcidid>0000-0002-3844-522X ; 0000-0003-2264-2701 ; 0000-0003-1669-4206 ; 0000-0003-3712-718X ; 0000-0003-0718-8918 ; 0000-0003-3472-3357 ; 0000-0002-9880-4319 ; 0000-0001-8519-047X ; 0000-0002-5526-3938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32079667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lokdarshi, Ansul</creatorcontrib><creatorcontrib>Guan, Ju</creatorcontrib><creatorcontrib>Urquidi Camacho, Ricardo A</creatorcontrib><creatorcontrib>Cho, Sung Ki</creatorcontrib><creatorcontrib>Morgan, Philip W</creatorcontrib><creatorcontrib>Leonard, Madison</creatorcontrib><creatorcontrib>Shimono, Masaki</creatorcontrib><creatorcontrib>Day, Brad</creatorcontrib><creatorcontrib>von Arnim, Albrecht G</creatorcontrib><title>Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Cytosolic mRNA translation is subject to global and mRNA-specific controls. Phosphorylation of the translation initiation factor eIF2α anchors a reversible regulatory switch that represses cytosolic translation globally. The stress-responsive GCN2 kinase is the only known kinase for eIF2α serine 56 in Arabidopsis ( ). Here, we show that conditions that generate reactive oxygen species (ROS) in the chloroplast, including dark-light transitions, high light, and the herbicide methyl viologen, rapidly activated GCN2 kinase, whereas mitochondrial and endoplasmic reticulum stress did not. GCN2 activation was light dependent and mitigated by photosynthesis inhibitors and ROS quenchers. Accordingly, the seedling growth of multiple Arabidopsis mutants was retarded under excess light conditions, implicating the GCN2-eIF2α pathway in responses to light and associated ROS. Once activated, GCN2 kinase preferentially suppressed the ribosome loading of mRNAs for functions such as mitochondrial ATP synthesis, the chloroplast thylakoids, vesicle trafficking, and translation. The mutant overaccumulated transcripts functionally related to abiotic stress, including oxidative stress, as well as innate immune responses. Accordingly, displayed defects in immune priming by the fungal elicitor, chitin. Therefore, we provide evidence that reactive oxygen species produced by the photosynthetic apparatus help activate the highly conserved GCN2 kinase, leading to eIF2α phosphorylation and thus affecting the status of the cytosolic protein synthesis apparatus.</description><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Chitin - metabolism</subject><subject>Chloroplasts - metabolism</subject><subject>Chloroplasts - radiation effects</subject><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>Gene Ontology</subject><subject>Herbicides - toxicity</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Light</subject><subject>Mutation - genetics</subject><subject>Phosphorylation - radiation effects</subject><subject>Photosynthesis - drug effects</subject><subject>Protein Biosynthesis - radiation effects</subject><subject>Protein Kinases - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Ribosomes - drug effects</subject><subject>Ribosomes - metabolism</subject><subject>Ribosomes - radiation effects</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - growth &amp; development</subject><subject>Seedlings - radiation effects</subject><subject>Transcriptome - genetics</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtPAjEUhRujEUR3rk1_gIO3nUeZjQkhiEYiiWLirimddqgZZiZtIfLvLaBEV_d1zneTg9A1gT4hkN75VvZJ3gdgKTlBXZLGNKL54OM09JBAlGQp6aAL5z4BgDCSn6NOTIHlWca6yE1NufR4KL3ZCK8c9kuF51bUrhLeNLWo8Ksq12Fo7BY_m1o4hSejF4o3RoST2BkVnn1tS1Xjt1ZJEyDjlaiDvS6xts1qzxwtq8Y2bSWcv0RnWlROXf3UHnp_GM9Hj9F0NnkaDaeRTFLwkVY0U4WSySKXg4GGgmqSQJHnkgEoRRhNk4wKsmC62C2COM00KYTOFhkwGvfQ_YHbrhcrVUhVeysq3lqzEnbLG2H4_0ttlrxsNpyRJE1YHAC3B4C0jXNW6aOXAN-Fz0P4nOR8H36Q3_z9dxT_ph1_A8YAg9M</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Lokdarshi, Ansul</creator><creator>Guan, Ju</creator><creator>Urquidi Camacho, Ricardo A</creator><creator>Cho, Sung Ki</creator><creator>Morgan, Philip W</creator><creator>Leonard, Madison</creator><creator>Shimono, Masaki</creator><creator>Day, Brad</creator><creator>von Arnim, Albrecht G</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3844-522X</orcidid><orcidid>https://orcid.org/0000-0003-2264-2701</orcidid><orcidid>https://orcid.org/0000-0003-1669-4206</orcidid><orcidid>https://orcid.org/0000-0003-3712-718X</orcidid><orcidid>https://orcid.org/0000-0003-0718-8918</orcidid><orcidid>https://orcid.org/0000-0003-3472-3357</orcidid><orcidid>https://orcid.org/0000-0002-9880-4319</orcidid><orcidid>https://orcid.org/0000-0001-8519-047X</orcidid><orcidid>https://orcid.org/0000-0002-5526-3938</orcidid></search><sort><creationdate>20200401</creationdate><title>Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast</title><author>Lokdarshi, Ansul ; Guan, Ju ; Urquidi Camacho, Ricardo A ; Cho, Sung Ki ; Morgan, Philip W ; Leonard, Madison ; Shimono, Masaki ; Day, Brad ; von Arnim, Albrecht G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-fe26edec4b9c88f0d2f140d99c700ee1725462a1b7fd00ee6ed56f1daf6b60723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Chitin - metabolism</topic><topic>Chloroplasts - metabolism</topic><topic>Chloroplasts - radiation effects</topic><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>Gene Ontology</topic><topic>Herbicides - toxicity</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Light</topic><topic>Mutation - genetics</topic><topic>Phosphorylation - radiation effects</topic><topic>Photosynthesis - drug effects</topic><topic>Protein Biosynthesis - radiation effects</topic><topic>Protein Kinases - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Ribosomes - drug effects</topic><topic>Ribosomes - metabolism</topic><topic>Ribosomes - radiation effects</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - growth &amp; development</topic><topic>Seedlings - radiation effects</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lokdarshi, Ansul</creatorcontrib><creatorcontrib>Guan, Ju</creatorcontrib><creatorcontrib>Urquidi Camacho, Ricardo A</creatorcontrib><creatorcontrib>Cho, Sung Ki</creatorcontrib><creatorcontrib>Morgan, Philip W</creatorcontrib><creatorcontrib>Leonard, Madison</creatorcontrib><creatorcontrib>Shimono, Masaki</creatorcontrib><creatorcontrib>Day, Brad</creatorcontrib><creatorcontrib>von Arnim, Albrecht G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lokdarshi, Ansul</au><au>Guan, Ju</au><au>Urquidi Camacho, Ricardo A</au><au>Cho, Sung Ki</au><au>Morgan, Philip W</au><au>Leonard, Madison</au><au>Shimono, Masaki</au><au>Day, Brad</au><au>von Arnim, Albrecht G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>32</volume><issue>4</issue><spage>1161</spage><epage>1178</epage><pages>1161-1178</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>Cytosolic mRNA translation is subject to global and mRNA-specific controls. Phosphorylation of the translation initiation factor eIF2α anchors a reversible regulatory switch that represses cytosolic translation globally. The stress-responsive GCN2 kinase is the only known kinase for eIF2α serine 56 in Arabidopsis ( ). Here, we show that conditions that generate reactive oxygen species (ROS) in the chloroplast, including dark-light transitions, high light, and the herbicide methyl viologen, rapidly activated GCN2 kinase, whereas mitochondrial and endoplasmic reticulum stress did not. GCN2 activation was light dependent and mitigated by photosynthesis inhibitors and ROS quenchers. Accordingly, the seedling growth of multiple Arabidopsis mutants was retarded under excess light conditions, implicating the GCN2-eIF2α pathway in responses to light and associated ROS. Once activated, GCN2 kinase preferentially suppressed the ribosome loading of mRNAs for functions such as mitochondrial ATP synthesis, the chloroplast thylakoids, vesicle trafficking, and translation. The mutant overaccumulated transcripts functionally related to abiotic stress, including oxidative stress, as well as innate immune responses. Accordingly, displayed defects in immune priming by the fungal elicitor, chitin. Therefore, we provide evidence that reactive oxygen species produced by the photosynthetic apparatus help activate the highly conserved GCN2 kinase, leading to eIF2α phosphorylation and thus affecting the status of the cytosolic protein synthesis apparatus.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>32079667</pmid><doi>10.1105/tpc.19.00751</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3844-522X</orcidid><orcidid>https://orcid.org/0000-0003-2264-2701</orcidid><orcidid>https://orcid.org/0000-0003-1669-4206</orcidid><orcidid>https://orcid.org/0000-0003-3712-718X</orcidid><orcidid>https://orcid.org/0000-0003-0718-8918</orcidid><orcidid>https://orcid.org/0000-0003-3472-3357</orcidid><orcidid>https://orcid.org/0000-0002-9880-4319</orcidid><orcidid>https://orcid.org/0000-0001-8519-047X</orcidid><orcidid>https://orcid.org/0000-0002-5526-3938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2020-04, Vol.32 (4), p.1161-1178
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7145473
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Arabidopsis - enzymology
Arabidopsis - radiation effects
Arabidopsis Proteins - metabolism
Chitin - metabolism
Chloroplasts - metabolism
Chloroplasts - radiation effects
Eukaryotic Initiation Factor-2 - metabolism
Gene Ontology
Herbicides - toxicity
Hydrogen Peroxide - pharmacology
Light
Mutation - genetics
Phosphorylation - radiation effects
Photosynthesis - drug effects
Protein Biosynthesis - radiation effects
Protein Kinases - metabolism
Reactive Oxygen Species - metabolism
Ribosomes - drug effects
Ribosomes - metabolism
Ribosomes - radiation effects
Seedlings - drug effects
Seedlings - growth & development
Seedlings - radiation effects
Transcriptome - genetics
title Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20Activates%20the%20Translational%20Regulatory%20Kinase%20GCN2%20via%20Reactive%20Oxygen%20Species%20Emanating%20from%20the%20Chloroplast&rft.jtitle=The%20Plant%20cell&rft.au=Lokdarshi,%20Ansul&rft.date=2020-04-01&rft.volume=32&rft.issue=4&rft.spage=1161&rft.epage=1178&rft.pages=1161-1178&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.19.00751&rft_dat=%3Cpubmed_cross%3E32079667%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32079667&rfr_iscdi=true