Major microbiota dysbiosis in severe obesity: fate after bariatric surgery
ObjectivesDecreased gut microbial gene richness (MGR) and compositional changes are associated with adverse metabolism in overweight or moderate obesity, but lack characterisation in severe obesity. Bariatric surgery (BS) improves metabolism and inflammation in severe obesity and is associated with...
Gespeichert in:
Veröffentlicht in: | Gut 2019-01, Vol.68 (1), p.70-82 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 70 |
container_title | Gut |
container_volume | 68 |
creator | Aron-Wisnewsky, Judith Prifti, Edi Belda, Eugeni Ichou, Farid Kayser, Brandon D Dao, Maria Carlota Verger, Eric O Hedjazi, Lyamine Bouillot, Jean-Luc Chevallier, Jean-Marc Pons, Nicolas Le Chatelier, Emmanuelle Levenez, Florence Ehrlich, Stanislav Dusko Dore, Joel Zucker, Jean-Daniel Clément, Karine |
description | ObjectivesDecreased gut microbial gene richness (MGR) and compositional changes are associated with adverse metabolism in overweight or moderate obesity, but lack characterisation in severe obesity. Bariatric surgery (BS) improves metabolism and inflammation in severe obesity and is associated with gut microbiota modifications. Here, we characterised severe obesity-associated dysbiosis (ie, MGR, microbiota composition and functional characteristics) and assessed whether BS would rescue these changes.DesignSixty-one severely obese subjects, candidates for adjustable gastric banding (AGB, n=20) or Roux-en-Y-gastric bypass (RYGB, n=41), were enrolled. Twenty-four subjects were followed at 1, 3 and 12 months post-BS. Gut microbiota and serum metabolome were analysed using shotgun metagenomics and liquid chromatography mass spectrometry (LC-MS). Confirmation groups were included.ResultsLow gene richness (LGC) was present in 75% of patients and correlated with increased trunk-fat mass and comorbidities (type 2 diabetes, hypertension and severity). Seventy-eight metagenomic species were altered with LGC, among which 50% were associated with adverse body composition and metabolic phenotypes. Nine serum metabolites (including glutarate, 3-methoxyphenylacetic acid and L-histidine) and functional modules containing protein families involved in their metabolism were strongly associated with low MGR. BS increased MGR 1 year postsurgery, but most RYGB patients remained with low MGR 1 year post-BS, despite greater metabolic improvement than AGB patients.ConclusionsWe identified major gut microbiota alterations in severe obesity, which include decreased MGR and related functional pathways linked with metabolic deteriorations. The lack of full rescue post-BS calls for additional strategies to improve the gut microbiota ecosystem and microbiome–host interactions in severe obesity.Trial registration number NCT01454232. |
doi_str_mv | 10.1136/gutjnl-2018-316103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7143256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2153582839</sourcerecordid><originalsourceid>FETCH-LOGICAL-b568t-d7d654bac24a0ed428ae9048b1576d273cccc17573f2539e280b6462df73383e3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EokPhD7BAltjAItSP-BEWlaoKKGgqNrC27ORm6iiJi-2MNP8ej1Iq2lW9sa_9nWP7HoTeUvKJUi7Pdkse5rFihOqKU0kJf4Y2tJalYlo_RxtCqKqEqpsT9CqlgRCidUNfohPW6KYhmm7Qj2s7hIgn38bgfMgWd4dUFskn7GecYA8RcHCQfD58xr3NgG2fIWJno7c5-hanJe4gHl6jF70dE7y5m0_R769ffl1eVduf375fXmwrJ6TOVac6KWpnW1ZbAl3NtIWG1NpRoWTHFG_LoEoo3jPBG2CaOFlL1vWKc82Bn6Lz1fd2cRN0Lcw52tHcRj_ZeDDBevPwZPY3Zhf2RtGaMyGLwcfV4OaR7Opia457hEnWMEH2tLAf7i6L4c8CKZvJpxbG0c4QlmQYEUJSpQUr6PtH6BCWOJdWGEYFF5pp3hSKrVRpeEoR-vsXUGKOsZo1VnOM1ayxFtG7_798L_mXYwGqFXDT8BTDvxDerW4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2153582839</pqid></control><display><type>article</type><title>Major microbiota dysbiosis in severe obesity: fate after bariatric surgery</title><source>MEDLINE</source><source>PubMed Central</source><creator>Aron-Wisnewsky, Judith ; Prifti, Edi ; Belda, Eugeni ; Ichou, Farid ; Kayser, Brandon D ; Dao, Maria Carlota ; Verger, Eric O ; Hedjazi, Lyamine ; Bouillot, Jean-Luc ; Chevallier, Jean-Marc ; Pons, Nicolas ; Le Chatelier, Emmanuelle ; Levenez, Florence ; Ehrlich, Stanislav Dusko ; Dore, Joel ; Zucker, Jean-Daniel ; Clément, Karine</creator><creatorcontrib>Aron-Wisnewsky, Judith ; Prifti, Edi ; Belda, Eugeni ; Ichou, Farid ; Kayser, Brandon D ; Dao, Maria Carlota ; Verger, Eric O ; Hedjazi, Lyamine ; Bouillot, Jean-Luc ; Chevallier, Jean-Marc ; Pons, Nicolas ; Le Chatelier, Emmanuelle ; Levenez, Florence ; Ehrlich, Stanislav Dusko ; Dore, Joel ; Zucker, Jean-Daniel ; Clément, Karine</creatorcontrib><description>ObjectivesDecreased gut microbial gene richness (MGR) and compositional changes are associated with adverse metabolism in overweight or moderate obesity, but lack characterisation in severe obesity. Bariatric surgery (BS) improves metabolism and inflammation in severe obesity and is associated with gut microbiota modifications. Here, we characterised severe obesity-associated dysbiosis (ie, MGR, microbiota composition and functional characteristics) and assessed whether BS would rescue these changes.DesignSixty-one severely obese subjects, candidates for adjustable gastric banding (AGB, n=20) or Roux-en-Y-gastric bypass (RYGB, n=41), were enrolled. Twenty-four subjects were followed at 1, 3 and 12 months post-BS. Gut microbiota and serum metabolome were analysed using shotgun metagenomics and liquid chromatography mass spectrometry (LC-MS). Confirmation groups were included.ResultsLow gene richness (LGC) was present in 75% of patients and correlated with increased trunk-fat mass and comorbidities (type 2 diabetes, hypertension and severity). Seventy-eight metagenomic species were altered with LGC, among which 50% were associated with adverse body composition and metabolic phenotypes. Nine serum metabolites (including glutarate, 3-methoxyphenylacetic acid and L-histidine) and functional modules containing protein families involved in their metabolism were strongly associated with low MGR. BS increased MGR 1 year postsurgery, but most RYGB patients remained with low MGR 1 year post-BS, despite greater metabolic improvement than AGB patients.ConclusionsWe identified major gut microbiota alterations in severe obesity, which include decreased MGR and related functional pathways linked with metabolic deteriorations. The lack of full rescue post-BS calls for additional strategies to improve the gut microbiota ecosystem and microbiome–host interactions in severe obesity.Trial registration number NCT01454232.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>DOI: 10.1136/gutjnl-2018-316103</identifier><identifier>PMID: 29899081</identifier><language>eng</language><publisher>England: BMJ Publishing Group LTD</publisher><subject>Adult ; Bariatric Surgery ; Biomarkers - blood ; Body composition ; Body fat ; Body mass index ; Body weight ; Chromatography, Liquid ; Comorbidity ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diet ; Dysbacteriosis ; Dysbiosis - etiology ; Female ; Gastric bypass ; Gastrointestinal Microbiome ; Gastrointestinal surgery ; Histidine ; Humans ; Inflammatory bowel disease ; Insulin resistance ; Intestinal microflora ; Life Sciences ; Liquid chromatography ; Male ; Mass Spectrometry ; Mass spectroscopy ; Metabolism ; Metabolites ; Metagenomics ; Microbiomes ; Microbiota ; Nutrition research ; Obesity ; Obesity, Morbid - microbiology ; Obesity, Morbid - surgery ; Overweight ; Phenotype ; Phenotypes ; Prospective Studies ; Protein families ; Protein turnover ; Risk Factors ; Surgery ; Weight control</subject><ispartof>Gut, 2019-01, Vol.68 (1), p.70-82</ispartof><rights>Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</rights><rights>2019 Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b568t-d7d654bac24a0ed428ae9048b1576d273cccc17573f2539e280b6462df73383e3</citedby><cites>FETCH-LOGICAL-b568t-d7d654bac24a0ed428ae9048b1576d273cccc17573f2539e280b6462df73383e3</cites><orcidid>0000-0001-6284-7352 ; 0000-0001-8861-1305 ; 0000-0002-7563-4046 ; 0000-0002-5597-7922 ; 0000-0002-2489-3355 ; 0000-0002-8756-0718 ; 0000-0002-8689-8290 ; 0000-0001-6293-5133 ; 0000-0003-4619-6785 ; 0000-0002-2724-0536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143256/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143256/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29899081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02629250$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aron-Wisnewsky, Judith</creatorcontrib><creatorcontrib>Prifti, Edi</creatorcontrib><creatorcontrib>Belda, Eugeni</creatorcontrib><creatorcontrib>Ichou, Farid</creatorcontrib><creatorcontrib>Kayser, Brandon D</creatorcontrib><creatorcontrib>Dao, Maria Carlota</creatorcontrib><creatorcontrib>Verger, Eric O</creatorcontrib><creatorcontrib>Hedjazi, Lyamine</creatorcontrib><creatorcontrib>Bouillot, Jean-Luc</creatorcontrib><creatorcontrib>Chevallier, Jean-Marc</creatorcontrib><creatorcontrib>Pons, Nicolas</creatorcontrib><creatorcontrib>Le Chatelier, Emmanuelle</creatorcontrib><creatorcontrib>Levenez, Florence</creatorcontrib><creatorcontrib>Ehrlich, Stanislav Dusko</creatorcontrib><creatorcontrib>Dore, Joel</creatorcontrib><creatorcontrib>Zucker, Jean-Daniel</creatorcontrib><creatorcontrib>Clément, Karine</creatorcontrib><title>Major microbiota dysbiosis in severe obesity: fate after bariatric surgery</title><title>Gut</title><addtitle>Gut</addtitle><description>ObjectivesDecreased gut microbial gene richness (MGR) and compositional changes are associated with adverse metabolism in overweight or moderate obesity, but lack characterisation in severe obesity. Bariatric surgery (BS) improves metabolism and inflammation in severe obesity and is associated with gut microbiota modifications. Here, we characterised severe obesity-associated dysbiosis (ie, MGR, microbiota composition and functional characteristics) and assessed whether BS would rescue these changes.DesignSixty-one severely obese subjects, candidates for adjustable gastric banding (AGB, n=20) or Roux-en-Y-gastric bypass (RYGB, n=41), were enrolled. Twenty-four subjects were followed at 1, 3 and 12 months post-BS. Gut microbiota and serum metabolome were analysed using shotgun metagenomics and liquid chromatography mass spectrometry (LC-MS). Confirmation groups were included.ResultsLow gene richness (LGC) was present in 75% of patients and correlated with increased trunk-fat mass and comorbidities (type 2 diabetes, hypertension and severity). Seventy-eight metagenomic species were altered with LGC, among which 50% were associated with adverse body composition and metabolic phenotypes. Nine serum metabolites (including glutarate, 3-methoxyphenylacetic acid and L-histidine) and functional modules containing protein families involved in their metabolism were strongly associated with low MGR. BS increased MGR 1 year postsurgery, but most RYGB patients remained with low MGR 1 year post-BS, despite greater metabolic improvement than AGB patients.ConclusionsWe identified major gut microbiota alterations in severe obesity, which include decreased MGR and related functional pathways linked with metabolic deteriorations. The lack of full rescue post-BS calls for additional strategies to improve the gut microbiota ecosystem and microbiome–host interactions in severe obesity.Trial registration number NCT01454232.</description><subject>Adult</subject><subject>Bariatric Surgery</subject><subject>Biomarkers - blood</subject><subject>Body composition</subject><subject>Body fat</subject><subject>Body mass index</subject><subject>Body weight</subject><subject>Chromatography, Liquid</subject><subject>Comorbidity</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diet</subject><subject>Dysbacteriosis</subject><subject>Dysbiosis - etiology</subject><subject>Female</subject><subject>Gastric bypass</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal surgery</subject><subject>Histidine</subject><subject>Humans</subject><subject>Inflammatory bowel disease</subject><subject>Insulin resistance</subject><subject>Intestinal microflora</subject><subject>Life Sciences</subject><subject>Liquid chromatography</subject><subject>Male</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metagenomics</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Nutrition research</subject><subject>Obesity</subject><subject>Obesity, Morbid - microbiology</subject><subject>Obesity, Morbid - surgery</subject><subject>Overweight</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Prospective Studies</subject><subject>Protein families</subject><subject>Protein turnover</subject><subject>Risk Factors</subject><subject>Surgery</subject><subject>Weight control</subject><issn>0017-5749</issn><issn>1468-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtv1DAUhS0EokPhD7BAltjAItSP-BEWlaoKKGgqNrC27ORm6iiJi-2MNP8ej1Iq2lW9sa_9nWP7HoTeUvKJUi7Pdkse5rFihOqKU0kJf4Y2tJalYlo_RxtCqKqEqpsT9CqlgRCidUNfohPW6KYhmm7Qj2s7hIgn38bgfMgWd4dUFskn7GecYA8RcHCQfD58xr3NgG2fIWJno7c5-hanJe4gHl6jF70dE7y5m0_R769ffl1eVduf375fXmwrJ6TOVac6KWpnW1ZbAl3NtIWG1NpRoWTHFG_LoEoo3jPBG2CaOFlL1vWKc82Bn6Lz1fd2cRN0Lcw52tHcRj_ZeDDBevPwZPY3Zhf2RtGaMyGLwcfV4OaR7Opia457hEnWMEH2tLAf7i6L4c8CKZvJpxbG0c4QlmQYEUJSpQUr6PtH6BCWOJdWGEYFF5pp3hSKrVRpeEoR-vsXUGKOsZo1VnOM1ayxFtG7_798L_mXYwGqFXDT8BTDvxDerW4</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Aron-Wisnewsky, Judith</creator><creator>Prifti, Edi</creator><creator>Belda, Eugeni</creator><creator>Ichou, Farid</creator><creator>Kayser, Brandon D</creator><creator>Dao, Maria Carlota</creator><creator>Verger, Eric O</creator><creator>Hedjazi, Lyamine</creator><creator>Bouillot, Jean-Luc</creator><creator>Chevallier, Jean-Marc</creator><creator>Pons, Nicolas</creator><creator>Le Chatelier, Emmanuelle</creator><creator>Levenez, Florence</creator><creator>Ehrlich, Stanislav Dusko</creator><creator>Dore, Joel</creator><creator>Zucker, Jean-Daniel</creator><creator>Clément, Karine</creator><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6284-7352</orcidid><orcidid>https://orcid.org/0000-0001-8861-1305</orcidid><orcidid>https://orcid.org/0000-0002-7563-4046</orcidid><orcidid>https://orcid.org/0000-0002-5597-7922</orcidid><orcidid>https://orcid.org/0000-0002-2489-3355</orcidid><orcidid>https://orcid.org/0000-0002-8756-0718</orcidid><orcidid>https://orcid.org/0000-0002-8689-8290</orcidid><orcidid>https://orcid.org/0000-0001-6293-5133</orcidid><orcidid>https://orcid.org/0000-0003-4619-6785</orcidid><orcidid>https://orcid.org/0000-0002-2724-0536</orcidid></search><sort><creationdate>20190101</creationdate><title>Major microbiota dysbiosis in severe obesity: fate after bariatric surgery</title><author>Aron-Wisnewsky, Judith ; Prifti, Edi ; Belda, Eugeni ; Ichou, Farid ; Kayser, Brandon D ; Dao, Maria Carlota ; Verger, Eric O ; Hedjazi, Lyamine ; Bouillot, Jean-Luc ; Chevallier, Jean-Marc ; Pons, Nicolas ; Le Chatelier, Emmanuelle ; Levenez, Florence ; Ehrlich, Stanislav Dusko ; Dore, Joel ; Zucker, Jean-Daniel ; Clément, Karine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b568t-d7d654bac24a0ed428ae9048b1576d273cccc17573f2539e280b6462df73383e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Bariatric Surgery</topic><topic>Biomarkers - blood</topic><topic>Body composition</topic><topic>Body fat</topic><topic>Body mass index</topic><topic>Body weight</topic><topic>Chromatography, Liquid</topic><topic>Comorbidity</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diet</topic><topic>Dysbacteriosis</topic><topic>Dysbiosis - etiology</topic><topic>Female</topic><topic>Gastric bypass</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal surgery</topic><topic>Histidine</topic><topic>Humans</topic><topic>Inflammatory bowel disease</topic><topic>Insulin resistance</topic><topic>Intestinal microflora</topic><topic>Life Sciences</topic><topic>Liquid chromatography</topic><topic>Male</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metagenomics</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Nutrition research</topic><topic>Obesity</topic><topic>Obesity, Morbid - microbiology</topic><topic>Obesity, Morbid - surgery</topic><topic>Overweight</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Prospective Studies</topic><topic>Protein families</topic><topic>Protein turnover</topic><topic>Risk Factors</topic><topic>Surgery</topic><topic>Weight control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aron-Wisnewsky, Judith</creatorcontrib><creatorcontrib>Prifti, Edi</creatorcontrib><creatorcontrib>Belda, Eugeni</creatorcontrib><creatorcontrib>Ichou, Farid</creatorcontrib><creatorcontrib>Kayser, Brandon D</creatorcontrib><creatorcontrib>Dao, Maria Carlota</creatorcontrib><creatorcontrib>Verger, Eric O</creatorcontrib><creatorcontrib>Hedjazi, Lyamine</creatorcontrib><creatorcontrib>Bouillot, Jean-Luc</creatorcontrib><creatorcontrib>Chevallier, Jean-Marc</creatorcontrib><creatorcontrib>Pons, Nicolas</creatorcontrib><creatorcontrib>Le Chatelier, Emmanuelle</creatorcontrib><creatorcontrib>Levenez, Florence</creatorcontrib><creatorcontrib>Ehrlich, Stanislav Dusko</creatorcontrib><creatorcontrib>Dore, Joel</creatorcontrib><creatorcontrib>Zucker, Jean-Daniel</creatorcontrib><creatorcontrib>Clément, Karine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aron-Wisnewsky, Judith</au><au>Prifti, Edi</au><au>Belda, Eugeni</au><au>Ichou, Farid</au><au>Kayser, Brandon D</au><au>Dao, Maria Carlota</au><au>Verger, Eric O</au><au>Hedjazi, Lyamine</au><au>Bouillot, Jean-Luc</au><au>Chevallier, Jean-Marc</au><au>Pons, Nicolas</au><au>Le Chatelier, Emmanuelle</au><au>Levenez, Florence</au><au>Ehrlich, Stanislav Dusko</au><au>Dore, Joel</au><au>Zucker, Jean-Daniel</au><au>Clément, Karine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Major microbiota dysbiosis in severe obesity: fate after bariatric surgery</atitle><jtitle>Gut</jtitle><addtitle>Gut</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>68</volume><issue>1</issue><spage>70</spage><epage>82</epage><pages>70-82</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><abstract>ObjectivesDecreased gut microbial gene richness (MGR) and compositional changes are associated with adverse metabolism in overweight or moderate obesity, but lack characterisation in severe obesity. Bariatric surgery (BS) improves metabolism and inflammation in severe obesity and is associated with gut microbiota modifications. Here, we characterised severe obesity-associated dysbiosis (ie, MGR, microbiota composition and functional characteristics) and assessed whether BS would rescue these changes.DesignSixty-one severely obese subjects, candidates for adjustable gastric banding (AGB, n=20) or Roux-en-Y-gastric bypass (RYGB, n=41), were enrolled. Twenty-four subjects were followed at 1, 3 and 12 months post-BS. Gut microbiota and serum metabolome were analysed using shotgun metagenomics and liquid chromatography mass spectrometry (LC-MS). Confirmation groups were included.ResultsLow gene richness (LGC) was present in 75% of patients and correlated with increased trunk-fat mass and comorbidities (type 2 diabetes, hypertension and severity). Seventy-eight metagenomic species were altered with LGC, among which 50% were associated with adverse body composition and metabolic phenotypes. Nine serum metabolites (including glutarate, 3-methoxyphenylacetic acid and L-histidine) and functional modules containing protein families involved in their metabolism were strongly associated with low MGR. BS increased MGR 1 year postsurgery, but most RYGB patients remained with low MGR 1 year post-BS, despite greater metabolic improvement than AGB patients.ConclusionsWe identified major gut microbiota alterations in severe obesity, which include decreased MGR and related functional pathways linked with metabolic deteriorations. The lack of full rescue post-BS calls for additional strategies to improve the gut microbiota ecosystem and microbiome–host interactions in severe obesity.Trial registration number NCT01454232.</abstract><cop>England</cop><pub>BMJ Publishing Group LTD</pub><pmid>29899081</pmid><doi>10.1136/gutjnl-2018-316103</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6284-7352</orcidid><orcidid>https://orcid.org/0000-0001-8861-1305</orcidid><orcidid>https://orcid.org/0000-0002-7563-4046</orcidid><orcidid>https://orcid.org/0000-0002-5597-7922</orcidid><orcidid>https://orcid.org/0000-0002-2489-3355</orcidid><orcidid>https://orcid.org/0000-0002-8756-0718</orcidid><orcidid>https://orcid.org/0000-0002-8689-8290</orcidid><orcidid>https://orcid.org/0000-0001-6293-5133</orcidid><orcidid>https://orcid.org/0000-0003-4619-6785</orcidid><orcidid>https://orcid.org/0000-0002-2724-0536</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-5749 |
ispartof | Gut, 2019-01, Vol.68 (1), p.70-82 |
issn | 0017-5749 1468-3288 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7143256 |
source | MEDLINE; PubMed Central |
subjects | Adult Bariatric Surgery Biomarkers - blood Body composition Body fat Body mass index Body weight Chromatography, Liquid Comorbidity Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diet Dysbacteriosis Dysbiosis - etiology Female Gastric bypass Gastrointestinal Microbiome Gastrointestinal surgery Histidine Humans Inflammatory bowel disease Insulin resistance Intestinal microflora Life Sciences Liquid chromatography Male Mass Spectrometry Mass spectroscopy Metabolism Metabolites Metagenomics Microbiomes Microbiota Nutrition research Obesity Obesity, Morbid - microbiology Obesity, Morbid - surgery Overweight Phenotype Phenotypes Prospective Studies Protein families Protein turnover Risk Factors Surgery Weight control |
title | Major microbiota dysbiosis in severe obesity: fate after bariatric surgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Major%20microbiota%20dysbiosis%20in%20severe%20obesity:%20fate%20after%20bariatric%20surgery&rft.jtitle=Gut&rft.au=Aron-Wisnewsky,%20Judith&rft.date=2019-01-01&rft.volume=68&rft.issue=1&rft.spage=70&rft.epage=82&rft.pages=70-82&rft.issn=0017-5749&rft.eissn=1468-3288&rft_id=info:doi/10.1136/gutjnl-2018-316103&rft_dat=%3Cproquest_pubme%3E2153582839%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2153582839&rft_id=info:pmid/29899081&rfr_iscdi=true |