CFIm25-regulated lncRNA acv3UTR promotes gastric tumorigenesis via miR-590-5p/YAP1 axis

Accumulating evidences indicate that 3ʹUTR of the coding gene can act as crucial regulators in gastric cancer (GC). However, the detailed mechanisms and responsive targets are not well established. Here, we found that acvr1b gene 3ʹUTR ( acv 3UTR) was elevated in GC tissue, the expression of which w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2020-04, Vol.39 (15), p.3075-3088
Hauptverfasser: Liu, Kai, Wang, Ben-Jun, Han, WeiWei, Chi, Chun-Hua, Gu, Chao, Wang, Yu, Fu, Xiaohai, Huang, Wei, Liu, Zhiguo, Song, Xilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3088
container_issue 15
container_start_page 3075
container_title Oncogene
container_volume 39
creator Liu, Kai
Wang, Ben-Jun
Han, WeiWei
Chi, Chun-Hua
Gu, Chao
Wang, Yu
Fu, Xiaohai
Huang, Wei
Liu, Zhiguo
Song, Xilin
description Accumulating evidences indicate that 3ʹUTR of the coding gene can act as crucial regulators in gastric cancer (GC). However, the detailed mechanisms and responsive targets are not well established. Here, we found that acvr1b gene 3ʹUTR ( acv 3UTR) was elevated in GC tissue, the expression of which was significantly correlated with advanced pTNM-stage and poor outcome in clinical patients. Forced expression of acv 3UTR promoted GC cells growth in vitro and in vivo. Mechanistically, our results suggested that acv 3UTR functioned as an oncogenic competing endogenous RNA via sponging miR-590-5p and enhancing YAP1 level. Tumor suppressor miR-590-5p was a molecular module in acv 3UTR regulatory axis, the forced expression of which led to impairing of oncogenic potential of acv 3UTR. The positive correlation of acv 3UTR and YAP1 expression, and the negative correlation of acv 3UTR and miR-590-5p expression, were verified in GC patients. Moreover, CFIm25 was identified as a key regulator contributing to acv 3UTR aberrant expression in GC binding to UGUA-264 motif. Overall, our finding defines a mechanism for understanding the potential role of acv 3UTR transcription in GC tumorigenesis, and indicates a correlation between 3ʹUTR trans -regulatory effect and GC development.
doi_str_mv 10.1038/s41388-020-1213-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7142022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619849768</galeid><sourcerecordid>A619849768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-324fc44621987b8d20bd2c4c087aa9f4e2e4f09d38e4abff1b4e30f45aa5ac0a3</originalsourceid><addsrcrecordid>eNp9Uktr3DAYFKUl2Sb5Ab0UQ89KPr1s-VJYlqQNhKYsCaUnIcuSq2BbW8le2n9fLZvmAW3QQaBvZqQZDULvCJwSYPIsccKkxEABE0oYlq_QgvCqxELU_DVaQC0A15TRQ_Q2pTsAqGqgB-iQUShLWckF-ra6uByowNF2c68n2xb9aNZfloU2W3Z7sy42MQxhsqnodJqiN8U0DyH6zo42-VRsvS4Gv8aiBiw2Z9-XX0mhf_l0jN443Sd7cr8foduL85vVZ3x1_elytbzCRpRiwoxyZzgvKall1ciWQtNSww3ISuvacUstd1C3TFquG-dIwy0Dx4XWQhvQ7Ah93Otu5mawrbHjFHWvNtEPOv5WQXv1fDL6H6oLW1URToHSLPDhXiCGn7NNk7oLcxzzmxXNUVY5YCleRDFZlYxQAY-oTvdW-dGFfKUZfDJqWWaHvK5KmVGn_0Dl1drBmzBa5_P5MwLZE0wMKUXrHuwRULsiqH0RVC6C2hVB7Tjvn-bywPj78xlA94CUR2Nn46Oj_6v-Acy2uxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387631250</pqid></control><display><type>article</type><title>CFIm25-regulated lncRNA acv3UTR promotes gastric tumorigenesis via miR-590-5p/YAP1 axis</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Liu, Kai ; Wang, Ben-Jun ; Han, WeiWei ; Chi, Chun-Hua ; Gu, Chao ; Wang, Yu ; Fu, Xiaohai ; Huang, Wei ; Liu, Zhiguo ; Song, Xilin</creator><creatorcontrib>Liu, Kai ; Wang, Ben-Jun ; Han, WeiWei ; Chi, Chun-Hua ; Gu, Chao ; Wang, Yu ; Fu, Xiaohai ; Huang, Wei ; Liu, Zhiguo ; Song, Xilin</creatorcontrib><description>Accumulating evidences indicate that 3ʹUTR of the coding gene can act as crucial regulators in gastric cancer (GC). However, the detailed mechanisms and responsive targets are not well established. Here, we found that acvr1b gene 3ʹUTR ( acv 3UTR) was elevated in GC tissue, the expression of which was significantly correlated with advanced pTNM-stage and poor outcome in clinical patients. Forced expression of acv 3UTR promoted GC cells growth in vitro and in vivo. Mechanistically, our results suggested that acv 3UTR functioned as an oncogenic competing endogenous RNA via sponging miR-590-5p and enhancing YAP1 level. Tumor suppressor miR-590-5p was a molecular module in acv 3UTR regulatory axis, the forced expression of which led to impairing of oncogenic potential of acv 3UTR. The positive correlation of acv 3UTR and YAP1 expression, and the negative correlation of acv 3UTR and miR-590-5p expression, were verified in GC patients. Moreover, CFIm25 was identified as a key regulator contributing to acv 3UTR aberrant expression in GC binding to UGUA-264 motif. Overall, our finding defines a mechanism for understanding the potential role of acv 3UTR transcription in GC tumorigenesis, and indicates a correlation between 3ʹUTR trans -regulatory effect and GC development.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-020-1213-8</identifier><identifier>PMID: 32066878</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3' Untranslated Regions - genetics ; 631/45 ; 631/67/1504/1829 ; Activin Receptors, Type I - genetics ; ACVR1B gene ; Adaptor Proteins, Signal Transducing - genetics ; Animals ; Apoptosis ; Carcinogenesis - genetics ; Care and treatment ; Cell Biology ; Cell Line, Tumor ; Cell Proliferation - genetics ; Cleavage And Polyadenylation Specificity Factor - metabolism ; Development and progression ; Disease Progression ; Female ; Gastric cancer ; Gene expression ; Gene Expression Regulation, Neoplastic ; Genetic aspects ; Health aspects ; Human Genetics ; Humans ; Internal Medicine ; Male ; Medicine ; Medicine &amp; Public Health ; Mice ; MicroRNA ; MicroRNAs - metabolism ; Middle Aged ; Oncology ; Ribonucleic acid ; RNA ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Stomach - pathology ; Stomach cancer ; Stomach Neoplasms - genetics ; Transcription ; Transcription Factors - genetics ; Transcription, Genetic ; Tumor suppressor genes ; Tumorigenesis ; Xenograft Model Antitumor Assays ; Yes-associated protein</subject><ispartof>Oncogene, 2020-04, Vol.39 (15), p.3075-3088</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-324fc44621987b8d20bd2c4c087aa9f4e2e4f09d38e4abff1b4e30f45aa5ac0a3</citedby><cites>FETCH-LOGICAL-c565t-324fc44621987b8d20bd2c4c087aa9f4e2e4f09d38e4abff1b4e30f45aa5ac0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32066878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Wang, Ben-Jun</creatorcontrib><creatorcontrib>Han, WeiWei</creatorcontrib><creatorcontrib>Chi, Chun-Hua</creatorcontrib><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Fu, Xiaohai</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Liu, Zhiguo</creatorcontrib><creatorcontrib>Song, Xilin</creatorcontrib><title>CFIm25-regulated lncRNA acv3UTR promotes gastric tumorigenesis via miR-590-5p/YAP1 axis</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Accumulating evidences indicate that 3ʹUTR of the coding gene can act as crucial regulators in gastric cancer (GC). However, the detailed mechanisms and responsive targets are not well established. Here, we found that acvr1b gene 3ʹUTR ( acv 3UTR) was elevated in GC tissue, the expression of which was significantly correlated with advanced pTNM-stage and poor outcome in clinical patients. Forced expression of acv 3UTR promoted GC cells growth in vitro and in vivo. Mechanistically, our results suggested that acv 3UTR functioned as an oncogenic competing endogenous RNA via sponging miR-590-5p and enhancing YAP1 level. Tumor suppressor miR-590-5p was a molecular module in acv 3UTR regulatory axis, the forced expression of which led to impairing of oncogenic potential of acv 3UTR. The positive correlation of acv 3UTR and YAP1 expression, and the negative correlation of acv 3UTR and miR-590-5p expression, were verified in GC patients. Moreover, CFIm25 was identified as a key regulator contributing to acv 3UTR aberrant expression in GC binding to UGUA-264 motif. Overall, our finding defines a mechanism for understanding the potential role of acv 3UTR transcription in GC tumorigenesis, and indicates a correlation between 3ʹUTR trans -regulatory effect and GC development.</description><subject>3' Untranslated Regions - genetics</subject><subject>631/45</subject><subject>631/67/1504/1829</subject><subject>Activin Receptors, Type I - genetics</subject><subject>ACVR1B gene</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Carcinogenesis - genetics</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - genetics</subject><subject>Cleavage And Polyadenylation Specificity Factor - metabolism</subject><subject>Development and progression</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Gastric cancer</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs - metabolism</subject><subject>Middle Aged</subject><subject>Oncology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Stomach - pathology</subject><subject>Stomach cancer</subject><subject>Stomach Neoplasms - genetics</subject><subject>Transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><subject>Tumor suppressor genes</subject><subject>Tumorigenesis</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Yes-associated protein</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9Uktr3DAYFKUl2Sb5Ab0UQ89KPr1s-VJYlqQNhKYsCaUnIcuSq2BbW8le2n9fLZvmAW3QQaBvZqQZDULvCJwSYPIsccKkxEABE0oYlq_QgvCqxELU_DVaQC0A15TRQ_Q2pTsAqGqgB-iQUShLWckF-ra6uByowNF2c68n2xb9aNZfloU2W3Z7sy42MQxhsqnodJqiN8U0DyH6zo42-VRsvS4Gv8aiBiw2Z9-XX0mhf_l0jN443Sd7cr8foduL85vVZ3x1_elytbzCRpRiwoxyZzgvKall1ciWQtNSww3ISuvacUstd1C3TFquG-dIwy0Dx4XWQhvQ7Ah93Otu5mawrbHjFHWvNtEPOv5WQXv1fDL6H6oLW1URToHSLPDhXiCGn7NNk7oLcxzzmxXNUVY5YCleRDFZlYxQAY-oTvdW-dGFfKUZfDJqWWaHvK5KmVGn_0Dl1drBmzBa5_P5MwLZE0wMKUXrHuwRULsiqH0RVC6C2hVB7Tjvn-bywPj78xlA94CUR2Nn46Oj_6v-Acy2uxc</recordid><startdate>20200409</startdate><enddate>20200409</enddate><creator>Liu, Kai</creator><creator>Wang, Ben-Jun</creator><creator>Han, WeiWei</creator><creator>Chi, Chun-Hua</creator><creator>Gu, Chao</creator><creator>Wang, Yu</creator><creator>Fu, Xiaohai</creator><creator>Huang, Wei</creator><creator>Liu, Zhiguo</creator><creator>Song, Xilin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20200409</creationdate><title>CFIm25-regulated lncRNA acv3UTR promotes gastric tumorigenesis via miR-590-5p/YAP1 axis</title><author>Liu, Kai ; Wang, Ben-Jun ; Han, WeiWei ; Chi, Chun-Hua ; Gu, Chao ; Wang, Yu ; Fu, Xiaohai ; Huang, Wei ; Liu, Zhiguo ; Song, Xilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-324fc44621987b8d20bd2c4c087aa9f4e2e4f09d38e4abff1b4e30f45aa5ac0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>631/45</topic><topic>631/67/1504/1829</topic><topic>Activin Receptors, Type I - genetics</topic><topic>ACVR1B gene</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Carcinogenesis - genetics</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - genetics</topic><topic>Cleavage And Polyadenylation Specificity Factor - metabolism</topic><topic>Development and progression</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Gastric cancer</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs - metabolism</topic><topic>Middle Aged</topic><topic>Oncology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Stomach - pathology</topic><topic>Stomach cancer</topic><topic>Stomach Neoplasms - genetics</topic><topic>Transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><topic>Tumor suppressor genes</topic><topic>Tumorigenesis</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Yes-associated protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Wang, Ben-Jun</creatorcontrib><creatorcontrib>Han, WeiWei</creatorcontrib><creatorcontrib>Chi, Chun-Hua</creatorcontrib><creatorcontrib>Gu, Chao</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Fu, Xiaohai</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Liu, Zhiguo</creatorcontrib><creatorcontrib>Song, Xilin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kai</au><au>Wang, Ben-Jun</au><au>Han, WeiWei</au><au>Chi, Chun-Hua</au><au>Gu, Chao</au><au>Wang, Yu</au><au>Fu, Xiaohai</au><au>Huang, Wei</au><au>Liu, Zhiguo</au><au>Song, Xilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFIm25-regulated lncRNA acv3UTR promotes gastric tumorigenesis via miR-590-5p/YAP1 axis</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2020-04-09</date><risdate>2020</risdate><volume>39</volume><issue>15</issue><spage>3075</spage><epage>3088</epage><pages>3075-3088</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Accumulating evidences indicate that 3ʹUTR of the coding gene can act as crucial regulators in gastric cancer (GC). However, the detailed mechanisms and responsive targets are not well established. Here, we found that acvr1b gene 3ʹUTR ( acv 3UTR) was elevated in GC tissue, the expression of which was significantly correlated with advanced pTNM-stage and poor outcome in clinical patients. Forced expression of acv 3UTR promoted GC cells growth in vitro and in vivo. Mechanistically, our results suggested that acv 3UTR functioned as an oncogenic competing endogenous RNA via sponging miR-590-5p and enhancing YAP1 level. Tumor suppressor miR-590-5p was a molecular module in acv 3UTR regulatory axis, the forced expression of which led to impairing of oncogenic potential of acv 3UTR. The positive correlation of acv 3UTR and YAP1 expression, and the negative correlation of acv 3UTR and miR-590-5p expression, were verified in GC patients. Moreover, CFIm25 was identified as a key regulator contributing to acv 3UTR aberrant expression in GC binding to UGUA-264 motif. Overall, our finding defines a mechanism for understanding the potential role of acv 3UTR transcription in GC tumorigenesis, and indicates a correlation between 3ʹUTR trans -regulatory effect and GC development.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32066878</pmid><doi>10.1038/s41388-020-1213-8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2020-04, Vol.39 (15), p.3075-3088
issn 0950-9232
1476-5594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7142022
source MEDLINE; Alma/SFX Local Collection
subjects 3' Untranslated Regions - genetics
631/45
631/67/1504/1829
Activin Receptors, Type I - genetics
ACVR1B gene
Adaptor Proteins, Signal Transducing - genetics
Animals
Apoptosis
Carcinogenesis - genetics
Care and treatment
Cell Biology
Cell Line, Tumor
Cell Proliferation - genetics
Cleavage And Polyadenylation Specificity Factor - metabolism
Development and progression
Disease Progression
Female
Gastric cancer
Gene expression
Gene Expression Regulation, Neoplastic
Genetic aspects
Health aspects
Human Genetics
Humans
Internal Medicine
Male
Medicine
Medicine & Public Health
Mice
MicroRNA
MicroRNAs - metabolism
Middle Aged
Oncology
Ribonucleic acid
RNA
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Stomach - pathology
Stomach cancer
Stomach Neoplasms - genetics
Transcription
Transcription Factors - genetics
Transcription, Genetic
Tumor suppressor genes
Tumorigenesis
Xenograft Model Antitumor Assays
Yes-associated protein
title CFIm25-regulated lncRNA acv3UTR promotes gastric tumorigenesis via miR-590-5p/YAP1 axis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFIm25-regulated%20lncRNA%20acv3UTR%20promotes%20gastric%20tumorigenesis%20via%20miR-590-5p/YAP1%20axis&rft.jtitle=Oncogene&rft.au=Liu,%20Kai&rft.date=2020-04-09&rft.volume=39&rft.issue=15&rft.spage=3075&rft.epage=3088&rft.pages=3075-3088&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-020-1213-8&rft_dat=%3Cgale_pubme%3EA619849768%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387631250&rft_id=info:pmid/32066878&rft_galeid=A619849768&rfr_iscdi=true