Design Principle for Decoding Calcium Signals to Generate Specific Gene Expression Via Transcription1
Design principles determine how plant cells decode specific calcium signatures to produce the correct gene expression response. The second messenger calcium plays a key role in conveying specificity of signaling pathways in plant cells. Specific calcium signatures are decoded to generate correct gen...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2020-04, Vol.182 (4), p.1743-1761 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1761 |
---|---|
container_issue | 4 |
container_start_page | 1743 |
container_title | Plant physiology (Bethesda) |
container_volume | 182 |
creator | Liu, Junli Lenzoni, Gioia Knight, Marc R. |
description | Design principles determine how plant cells decode specific calcium signatures to produce the correct gene expression response.
The second messenger calcium plays a key role in conveying specificity of signaling pathways in plant cells. Specific calcium signatures are decoded to generate correct gene expression responses and amplification of calcium signatures is vital to this process. (1) It is not known if this amplification is an intrinsic property of all calcium-regulated gene expression responses and whether all calcium signatures have the potential to be amplified, or (2) how a given calcium signature maintains specificity in cells containing a great number of transcription factors (TFs) and other proteins with the potential to be calcium-regulated. The work presented here uncovers the design principle by which it is possible to decode calcium signals into specific changes in gene transcription in plant cells. Regarding the first question, we found that the binding mechanism between protein components possesses an intrinsic property that will nonlinearly amplify any calcium signal. This nonlinear amplification allows plant cells to effectively distinguish the kinetics of different calcium signatures to produce specific and appropriate changes in gene expression. Regarding the second question, we found that the large number of calmodulin (CaM)-binding TFs or proteins in plant cells form a buffering system such that the concentration of an active CaM-binding TF is insensitive to the concentration of any other CaM-binding protein, thus maintaining specificity. The design principle revealed by this work can be used to explain how any CaM-binding TF decodes calcium signals to generate specific gene expression responses in plant cells via transcription. |
doi_str_mv | 10.1104/pp.19.01003 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7140924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_7140924</sourcerecordid><originalsourceid>FETCH-LOGICAL-p125t-f1f8db32f174be0a30769ee545e54682c270475bc5c909fc944402186afb1c493</originalsourceid><addsrcrecordid>eNpVj91KAzEQhYMotlavfIG8wNaZ_HQ3N4K0tQoFhVZvl2ya1Mg2G5Kt6Nu7qDdeDAPfOXM4Q8g1whQRxE2MU1RTQAB-QsYoOSuYFNUpGQ-EFVBVakQucn4HAOQozsmIYymE4nJM7MJmvw_0OflgfGwtdV2iC2u6nQ97Otet8ccD3Qwe3Wbad3Rlg026t3QTrfHOmx9Cl58x2Zx9F-ir13SbdMgm-dgPBC_JmRvO7dXfnpCX--V2_lCsn1aP87t1EZHJvnDoql3DmRvqNRY0h3KmrJVCDjOrmGEliFI2RhoFyhklhACG1Uy7Bs3w0ITc_ubGY3OwO2NDn3Rbx-QPOn3Vnfb1fyX4t3rffdQlClBM8G-HymRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design Principle for Decoding Calcium Signals to Generate Specific Gene Expression Via Transcription1</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Junli ; Lenzoni, Gioia ; Knight, Marc R.</creator><creatorcontrib>Liu, Junli ; Lenzoni, Gioia ; Knight, Marc R.</creatorcontrib><description>Design principles determine how plant cells decode specific calcium signatures to produce the correct gene expression response.
The second messenger calcium plays a key role in conveying specificity of signaling pathways in plant cells. Specific calcium signatures are decoded to generate correct gene expression responses and amplification of calcium signatures is vital to this process. (1) It is not known if this amplification is an intrinsic property of all calcium-regulated gene expression responses and whether all calcium signatures have the potential to be amplified, or (2) how a given calcium signature maintains specificity in cells containing a great number of transcription factors (TFs) and other proteins with the potential to be calcium-regulated. The work presented here uncovers the design principle by which it is possible to decode calcium signals into specific changes in gene transcription in plant cells. Regarding the first question, we found that the binding mechanism between protein components possesses an intrinsic property that will nonlinearly amplify any calcium signal. This nonlinear amplification allows plant cells to effectively distinguish the kinetics of different calcium signatures to produce specific and appropriate changes in gene expression. Regarding the second question, we found that the large number of calmodulin (CaM)-binding TFs or proteins in plant cells form a buffering system such that the concentration of an active CaM-binding TF is insensitive to the concentration of any other CaM-binding protein, thus maintaining specificity. The design principle revealed by this work can be used to explain how any CaM-binding TF decodes calcium signals to generate specific gene expression responses in plant cells via transcription.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.19.01003</identifier><identifier>PMID: 31744935</identifier><language>eng</language><publisher>American Society of Plant Biologists</publisher><subject>s - Focus Issue</subject><ispartof>Plant physiology (Bethesda), 2020-04, Vol.182 (4), p.1743-1761</ispartof><rights>2020 American Society of Plant Biologists. All Rights Reserved. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Junli</creatorcontrib><creatorcontrib>Lenzoni, Gioia</creatorcontrib><creatorcontrib>Knight, Marc R.</creatorcontrib><title>Design Principle for Decoding Calcium Signals to Generate Specific Gene Expression Via Transcription1</title><title>Plant physiology (Bethesda)</title><description>Design principles determine how plant cells decode specific calcium signatures to produce the correct gene expression response.
The second messenger calcium plays a key role in conveying specificity of signaling pathways in plant cells. Specific calcium signatures are decoded to generate correct gene expression responses and amplification of calcium signatures is vital to this process. (1) It is not known if this amplification is an intrinsic property of all calcium-regulated gene expression responses and whether all calcium signatures have the potential to be amplified, or (2) how a given calcium signature maintains specificity in cells containing a great number of transcription factors (TFs) and other proteins with the potential to be calcium-regulated. The work presented here uncovers the design principle by which it is possible to decode calcium signals into specific changes in gene transcription in plant cells. Regarding the first question, we found that the binding mechanism between protein components possesses an intrinsic property that will nonlinearly amplify any calcium signal. This nonlinear amplification allows plant cells to effectively distinguish the kinetics of different calcium signatures to produce specific and appropriate changes in gene expression. Regarding the second question, we found that the large number of calmodulin (CaM)-binding TFs or proteins in plant cells form a buffering system such that the concentration of an active CaM-binding TF is insensitive to the concentration of any other CaM-binding protein, thus maintaining specificity. The design principle revealed by this work can be used to explain how any CaM-binding TF decodes calcium signals to generate specific gene expression responses in plant cells via transcription.</description><subject>s - Focus Issue</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVj91KAzEQhYMotlavfIG8wNaZ_HQ3N4K0tQoFhVZvl2ya1Mg2G5Kt6Nu7qDdeDAPfOXM4Q8g1whQRxE2MU1RTQAB-QsYoOSuYFNUpGQ-EFVBVakQucn4HAOQozsmIYymE4nJM7MJmvw_0OflgfGwtdV2iC2u6nQ97Otet8ccD3Qwe3Wbad3Rlg026t3QTrfHOmx9Cl58x2Zx9F-ir13SbdMgm-dgPBC_JmRvO7dXfnpCX--V2_lCsn1aP87t1EZHJvnDoql3DmRvqNRY0h3KmrJVCDjOrmGEliFI2RhoFyhklhACG1Uy7Bs3w0ITc_ubGY3OwO2NDn3Rbx-QPOn3Vnfb1fyX4t3rffdQlClBM8G-HymRQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Liu, Junli</creator><creator>Lenzoni, Gioia</creator><creator>Knight, Marc R.</creator><general>American Society of Plant Biologists</general><scope>5PM</scope></search><sort><creationdate>20200401</creationdate><title>Design Principle for Decoding Calcium Signals to Generate Specific Gene Expression Via Transcription1</title><author>Liu, Junli ; Lenzoni, Gioia ; Knight, Marc R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p125t-f1f8db32f174be0a30769ee545e54682c270475bc5c909fc944402186afb1c493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>s - Focus Issue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Junli</creatorcontrib><creatorcontrib>Lenzoni, Gioia</creatorcontrib><creatorcontrib>Knight, Marc R.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Junli</au><au>Lenzoni, Gioia</au><au>Knight, Marc R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Principle for Decoding Calcium Signals to Generate Specific Gene Expression Via Transcription1</atitle><jtitle>Plant physiology (Bethesda)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>182</volume><issue>4</issue><spage>1743</spage><epage>1761</epage><pages>1743-1761</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Design principles determine how plant cells decode specific calcium signatures to produce the correct gene expression response.
The second messenger calcium plays a key role in conveying specificity of signaling pathways in plant cells. Specific calcium signatures are decoded to generate correct gene expression responses and amplification of calcium signatures is vital to this process. (1) It is not known if this amplification is an intrinsic property of all calcium-regulated gene expression responses and whether all calcium signatures have the potential to be amplified, or (2) how a given calcium signature maintains specificity in cells containing a great number of transcription factors (TFs) and other proteins with the potential to be calcium-regulated. The work presented here uncovers the design principle by which it is possible to decode calcium signals into specific changes in gene transcription in plant cells. Regarding the first question, we found that the binding mechanism between protein components possesses an intrinsic property that will nonlinearly amplify any calcium signal. This nonlinear amplification allows plant cells to effectively distinguish the kinetics of different calcium signatures to produce specific and appropriate changes in gene expression. Regarding the second question, we found that the large number of calmodulin (CaM)-binding TFs or proteins in plant cells form a buffering system such that the concentration of an active CaM-binding TF is insensitive to the concentration of any other CaM-binding protein, thus maintaining specificity. The design principle revealed by this work can be used to explain how any CaM-binding TF decodes calcium signals to generate specific gene expression responses in plant cells via transcription.</abstract><pub>American Society of Plant Biologists</pub><pmid>31744935</pmid><doi>10.1104/pp.19.01003</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2020-04, Vol.182 (4), p.1743-1761 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7140924 |
source | Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | s - Focus Issue |
title | Design Principle for Decoding Calcium Signals to Generate Specific Gene Expression Via Transcription1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Principle%20for%20Decoding%20Calcium%20Signals%20to%20Generate%20Specific%20Gene%20Expression%20Via%20Transcription1&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Liu,%20Junli&rft.date=2020-04-01&rft.volume=182&rft.issue=4&rft.spage=1743&rft.epage=1761&rft.pages=1743-1761&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.19.01003&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_7140924%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31744935&rfr_iscdi=true |