Correlation Coefficients for a Study with Repeated Measures

Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2020, Vol.2020 (2020), p.1-11
Hauptverfasser: Shan, Guogen, Jiang, Tao, Zhang, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2020
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2020
creator Shan, Guogen
Jiang, Tao
Zhang, Hua
description Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) correlation of subject means; (3) partial correlation for subject effect; (4) partial correlation for visit effect; and (5) a mixed model approach. Pearson correlation coefficient is traditionally used in a cross-sectional study. Pearson correlation is close to the correlations computed from mixed-effects models that consider the correlation structure, but Pearson correlation may not be theoretically appropriate in a repeated-measure study as it ignores the correlation of the outcomes from multiple visits within the same subject. We compare these methods with regard to the average of correlation and the mean squared error. In general, correlation under the mixed-effects model with the compound symmetric structure is recommended as its correlation is close to the nominal level with small mean square error.
doi_str_mv 10.1155/2020/7398324
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7136761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391972338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-baec2f6f1016f10fae35dd86370dda84db462f77093af048dd491aa41310bbbb3</originalsourceid><addsrcrecordid>eNqNkM2LE0EQxRtRTIzePC9zFNZsuqZ6pmcQFpbgx0JE8AO8NZXpatMymc52z7jkv3dCYlxv1qGqoH68ejwhXoK8AiiKRS5zudBYV5irR2IKWlXzUkP1-LzL7xPxLKWfUhagC3gqJpijlKjVVLxZhhi5pd6HLlsGds43nrs-ZS7EjLIv_WD32b3vN9ln3jH1bLOPTGmInJ6LJ47axC9Ocya-vXv7dflhvvr0_nZ5s5o3SmE_XxM3uSsdSDg0R4yFtVWJWlpLlbJrVeZOa1kjOakqa1UNRAoQ5HosnInro-5uWG_ZNqO9SK3ZRb-luDeBvPn30vmN-RF-GQ1Y6hJGgVcngRjuBk692frUcNtSx2FIJscaap0jViP6-og2MaQU2Z3fgDSHvM0hb3PKe8QvHlo7w38CHoHLI7DxnaV7_59yPDLs6C8NWBdlib8Bl4CSqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391972338</pqid></control><display><type>article</type><title>Correlation Coefficients for a Study with Repeated Measures</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shan, Guogen ; Jiang, Tao ; Zhang, Hua</creator><contributor>Karaman, Rafik</contributor><creatorcontrib>Shan, Guogen ; Jiang, Tao ; Zhang, Hua ; Karaman, Rafik</creatorcontrib><description>Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) correlation of subject means; (3) partial correlation for subject effect; (4) partial correlation for visit effect; and (5) a mixed model approach. Pearson correlation coefficient is traditionally used in a cross-sectional study. Pearson correlation is close to the correlations computed from mixed-effects models that consider the correlation structure, but Pearson correlation may not be theoretically appropriate in a repeated-measure study as it ignores the correlation of the outcomes from multiple visits within the same subject. We compare these methods with regard to the average of correlation and the mean squared error. In general, correlation under the mixed-effects model with the compound symmetric structure is recommended as its correlation is close to the nominal level with small mean square error.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2020/7398324</identifier><identifier>PMID: 32300374</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - psychology ; Computational Biology - methods ; Computer Simulation ; Cross-Sectional Studies ; Data Interpretation, Statistical ; Databases, Factual - statistics &amp; numerical data ; Disease Progression ; Humans ; Longitudinal Studies ; Models, Statistical ; Neuroimaging - statistics &amp; numerical data</subject><ispartof>Computational and mathematical methods in medicine, 2020, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Guogen Shan et al.</rights><rights>Copyright © 2020 Guogen Shan et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-baec2f6f1016f10fae35dd86370dda84db462f77093af048dd491aa41310bbbb3</citedby><cites>FETCH-LOGICAL-c443t-baec2f6f1016f10fae35dd86370dda84db462f77093af048dd491aa41310bbbb3</cites><orcidid>0000-0002-4306-3971 ; 0000-0001-8690-6599 ; 0000-0002-1379-2348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136761/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136761/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,4012,27906,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32300374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Karaman, Rafik</contributor><creatorcontrib>Shan, Guogen</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><title>Correlation Coefficients for a Study with Repeated Measures</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) correlation of subject means; (3) partial correlation for subject effect; (4) partial correlation for visit effect; and (5) a mixed model approach. Pearson correlation coefficient is traditionally used in a cross-sectional study. Pearson correlation is close to the correlations computed from mixed-effects models that consider the correlation structure, but Pearson correlation may not be theoretically appropriate in a repeated-measure study as it ignores the correlation of the outcomes from multiple visits within the same subject. We compare these methods with regard to the average of correlation and the mean squared error. In general, correlation under the mixed-effects model with the compound symmetric structure is recommended as its correlation is close to the nominal level with small mean square error.</description><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - psychology</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Cross-Sectional Studies</subject><subject>Data Interpretation, Statistical</subject><subject>Databases, Factual - statistics &amp; numerical data</subject><subject>Disease Progression</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Models, Statistical</subject><subject>Neuroimaging - statistics &amp; numerical data</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkM2LE0EQxRtRTIzePC9zFNZsuqZ6pmcQFpbgx0JE8AO8NZXpatMymc52z7jkv3dCYlxv1qGqoH68ejwhXoK8AiiKRS5zudBYV5irR2IKWlXzUkP1-LzL7xPxLKWfUhagC3gqJpijlKjVVLxZhhi5pd6HLlsGds43nrs-ZS7EjLIv_WD32b3vN9ln3jH1bLOPTGmInJ6LJ47axC9Ocya-vXv7dflhvvr0_nZ5s5o3SmE_XxM3uSsdSDg0R4yFtVWJWlpLlbJrVeZOa1kjOakqa1UNRAoQ5HosnInro-5uWG_ZNqO9SK3ZRb-luDeBvPn30vmN-RF-GQ1Y6hJGgVcngRjuBk692frUcNtSx2FIJscaap0jViP6-og2MaQU2Z3fgDSHvM0hb3PKe8QvHlo7w38CHoHLI7DxnaV7_59yPDLs6C8NWBdlib8Bl4CSqg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Shan, Guogen</creator><creator>Jiang, Tao</creator><creator>Zhang, Hua</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4306-3971</orcidid><orcidid>https://orcid.org/0000-0001-8690-6599</orcidid><orcidid>https://orcid.org/0000-0002-1379-2348</orcidid></search><sort><creationdate>2020</creationdate><title>Correlation Coefficients for a Study with Repeated Measures</title><author>Shan, Guogen ; Jiang, Tao ; Zhang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-baec2f6f1016f10fae35dd86370dda84db462f77093af048dd491aa41310bbbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - psychology</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Cross-Sectional Studies</topic><topic>Data Interpretation, Statistical</topic><topic>Databases, Factual - statistics &amp; numerical data</topic><topic>Disease Progression</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Models, Statistical</topic><topic>Neuroimaging - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Guogen</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Guogen</au><au>Jiang, Tao</au><au>Zhang, Hua</au><au>Karaman, Rafik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation Coefficients for a Study with Repeated Measures</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) correlation of subject means; (3) partial correlation for subject effect; (4) partial correlation for visit effect; and (5) a mixed model approach. Pearson correlation coefficient is traditionally used in a cross-sectional study. Pearson correlation is close to the correlations computed from mixed-effects models that consider the correlation structure, but Pearson correlation may not be theoretically appropriate in a repeated-measure study as it ignores the correlation of the outcomes from multiple visits within the same subject. We compare these methods with regard to the average of correlation and the mean squared error. In general, correlation under the mixed-effects model with the compound symmetric structure is recommended as its correlation is close to the nominal level with small mean square error.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32300374</pmid><doi>10.1155/2020/7398324</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4306-3971</orcidid><orcidid>https://orcid.org/0000-0001-8690-6599</orcidid><orcidid>https://orcid.org/0000-0002-1379-2348</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2020, Vol.2020 (2020), p.1-11
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7136761
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection
subjects Alzheimer Disease - diagnostic imaging
Alzheimer Disease - psychology
Computational Biology - methods
Computer Simulation
Cross-Sectional Studies
Data Interpretation, Statistical
Databases, Factual - statistics & numerical data
Disease Progression
Humans
Longitudinal Studies
Models, Statistical
Neuroimaging - statistics & numerical data
title Correlation Coefficients for a Study with Repeated Measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20Coefficients%20for%20a%20Study%20with%20Repeated%20Measures&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Shan,%20Guogen&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2020/7398324&rft_dat=%3Cproquest_pubme%3E2391972338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391972338&rft_id=info:pmid/32300374&rfr_iscdi=true