Correlation Coefficients for a Study with Repeated Measures
Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) cor...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2020, Vol.2020 (2020), p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2020 |
creator | Shan, Guogen Jiang, Tao Zhang, Hua |
description | Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) correlation of subject means; (3) partial correlation for subject effect; (4) partial correlation for visit effect; and (5) a mixed model approach. Pearson correlation coefficient is traditionally used in a cross-sectional study. Pearson correlation is close to the correlations computed from mixed-effects models that consider the correlation structure, but Pearson correlation may not be theoretically appropriate in a repeated-measure study as it ignores the correlation of the outcomes from multiple visits within the same subject. We compare these methods with regard to the average of correlation and the mean squared error. In general, correlation under the mixed-effects model with the compound symmetric structure is recommended as its correlation is close to the nominal level with small mean square error. |
doi_str_mv | 10.1155/2020/7398324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7136761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391972338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-baec2f6f1016f10fae35dd86370dda84db462f77093af048dd491aa41310bbbb3</originalsourceid><addsrcrecordid>eNqNkM2LE0EQxRtRTIzePC9zFNZsuqZ6pmcQFpbgx0JE8AO8NZXpatMymc52z7jkv3dCYlxv1qGqoH68ejwhXoK8AiiKRS5zudBYV5irR2IKWlXzUkP1-LzL7xPxLKWfUhagC3gqJpijlKjVVLxZhhi5pd6HLlsGds43nrs-ZS7EjLIv_WD32b3vN9ln3jH1bLOPTGmInJ6LJ47axC9Ocya-vXv7dflhvvr0_nZ5s5o3SmE_XxM3uSsdSDg0R4yFtVWJWlpLlbJrVeZOa1kjOakqa1UNRAoQ5HosnInro-5uWG_ZNqO9SK3ZRb-luDeBvPn30vmN-RF-GQ1Y6hJGgVcngRjuBk692frUcNtSx2FIJscaap0jViP6-og2MaQU2Z3fgDSHvM0hb3PKe8QvHlo7w38CHoHLI7DxnaV7_59yPDLs6C8NWBdlib8Bl4CSqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391972338</pqid></control><display><type>article</type><title>Correlation Coefficients for a Study with Repeated Measures</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shan, Guogen ; Jiang, Tao ; Zhang, Hua</creator><contributor>Karaman, Rafik</contributor><creatorcontrib>Shan, Guogen ; Jiang, Tao ; Zhang, Hua ; Karaman, Rafik</creatorcontrib><description>Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) correlation of subject means; (3) partial correlation for subject effect; (4) partial correlation for visit effect; and (5) a mixed model approach. Pearson correlation coefficient is traditionally used in a cross-sectional study. Pearson correlation is close to the correlations computed from mixed-effects models that consider the correlation structure, but Pearson correlation may not be theoretically appropriate in a repeated-measure study as it ignores the correlation of the outcomes from multiple visits within the same subject. We compare these methods with regard to the average of correlation and the mean squared error. In general, correlation under the mixed-effects model with the compound symmetric structure is recommended as its correlation is close to the nominal level with small mean square error.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2020/7398324</identifier><identifier>PMID: 32300374</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Alzheimer Disease - diagnostic imaging ; Alzheimer Disease - psychology ; Computational Biology - methods ; Computer Simulation ; Cross-Sectional Studies ; Data Interpretation, Statistical ; Databases, Factual - statistics & numerical data ; Disease Progression ; Humans ; Longitudinal Studies ; Models, Statistical ; Neuroimaging - statistics & numerical data</subject><ispartof>Computational and mathematical methods in medicine, 2020, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Guogen Shan et al.</rights><rights>Copyright © 2020 Guogen Shan et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-baec2f6f1016f10fae35dd86370dda84db462f77093af048dd491aa41310bbbb3</citedby><cites>FETCH-LOGICAL-c443t-baec2f6f1016f10fae35dd86370dda84db462f77093af048dd491aa41310bbbb3</cites><orcidid>0000-0002-4306-3971 ; 0000-0001-8690-6599 ; 0000-0002-1379-2348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136761/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136761/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,4012,27906,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32300374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Karaman, Rafik</contributor><creatorcontrib>Shan, Guogen</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><title>Correlation Coefficients for a Study with Repeated Measures</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) correlation of subject means; (3) partial correlation for subject effect; (4) partial correlation for visit effect; and (5) a mixed model approach. Pearson correlation coefficient is traditionally used in a cross-sectional study. Pearson correlation is close to the correlations computed from mixed-effects models that consider the correlation structure, but Pearson correlation may not be theoretically appropriate in a repeated-measure study as it ignores the correlation of the outcomes from multiple visits within the same subject. We compare these methods with regard to the average of correlation and the mean squared error. In general, correlation under the mixed-effects model with the compound symmetric structure is recommended as its correlation is close to the nominal level with small mean square error.</description><subject>Alzheimer Disease - diagnostic imaging</subject><subject>Alzheimer Disease - psychology</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Cross-Sectional Studies</subject><subject>Data Interpretation, Statistical</subject><subject>Databases, Factual - statistics & numerical data</subject><subject>Disease Progression</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Models, Statistical</subject><subject>Neuroimaging - statistics & numerical data</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkM2LE0EQxRtRTIzePC9zFNZsuqZ6pmcQFpbgx0JE8AO8NZXpatMymc52z7jkv3dCYlxv1qGqoH68ejwhXoK8AiiKRS5zudBYV5irR2IKWlXzUkP1-LzL7xPxLKWfUhagC3gqJpijlKjVVLxZhhi5pd6HLlsGds43nrs-ZS7EjLIv_WD32b3vN9ln3jH1bLOPTGmInJ6LJ47axC9Ocya-vXv7dflhvvr0_nZ5s5o3SmE_XxM3uSsdSDg0R4yFtVWJWlpLlbJrVeZOa1kjOakqa1UNRAoQ5HosnInro-5uWG_ZNqO9SK3ZRb-luDeBvPn30vmN-RF-GQ1Y6hJGgVcngRjuBk692frUcNtSx2FIJscaap0jViP6-og2MaQU2Z3fgDSHvM0hb3PKe8QvHlo7w38CHoHLI7DxnaV7_59yPDLs6C8NWBdlib8Bl4CSqg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Shan, Guogen</creator><creator>Jiang, Tao</creator><creator>Zhang, Hua</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4306-3971</orcidid><orcidid>https://orcid.org/0000-0001-8690-6599</orcidid><orcidid>https://orcid.org/0000-0002-1379-2348</orcidid></search><sort><creationdate>2020</creationdate><title>Correlation Coefficients for a Study with Repeated Measures</title><author>Shan, Guogen ; Jiang, Tao ; Zhang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-baec2f6f1016f10fae35dd86370dda84db462f77093af048dd491aa41310bbbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer Disease - diagnostic imaging</topic><topic>Alzheimer Disease - psychology</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Cross-Sectional Studies</topic><topic>Data Interpretation, Statistical</topic><topic>Databases, Factual - statistics & numerical data</topic><topic>Disease Progression</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Models, Statistical</topic><topic>Neuroimaging - statistics & numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Guogen</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Guogen</au><au>Jiang, Tao</au><au>Zhang, Hua</au><au>Karaman, Rafik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation Coefficients for a Study with Repeated Measures</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Repeated measures are increasingly collected in a study to investigate the trajectory of measures over time. One of the first research questions is to determine the correlation between two measures. The following five methods for correlation calculation are compared: (1) Pearson correlation; (2) correlation of subject means; (3) partial correlation for subject effect; (4) partial correlation for visit effect; and (5) a mixed model approach. Pearson correlation coefficient is traditionally used in a cross-sectional study. Pearson correlation is close to the correlations computed from mixed-effects models that consider the correlation structure, but Pearson correlation may not be theoretically appropriate in a repeated-measure study as it ignores the correlation of the outcomes from multiple visits within the same subject. We compare these methods with regard to the average of correlation and the mean squared error. In general, correlation under the mixed-effects model with the compound symmetric structure is recommended as its correlation is close to the nominal level with small mean square error.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32300374</pmid><doi>10.1155/2020/7398324</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4306-3971</orcidid><orcidid>https://orcid.org/0000-0001-8690-6599</orcidid><orcidid>https://orcid.org/0000-0002-1379-2348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2020, Vol.2020 (2020), p.1-11 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7136761 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
subjects | Alzheimer Disease - diagnostic imaging Alzheimer Disease - psychology Computational Biology - methods Computer Simulation Cross-Sectional Studies Data Interpretation, Statistical Databases, Factual - statistics & numerical data Disease Progression Humans Longitudinal Studies Models, Statistical Neuroimaging - statistics & numerical data |
title | Correlation Coefficients for a Study with Repeated Measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20Coefficients%20for%20a%20Study%20with%20Repeated%20Measures&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Shan,%20Guogen&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2020/7398324&rft_dat=%3Cproquest_pubme%3E2391972338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2391972338&rft_id=info:pmid/32300374&rfr_iscdi=true |