Biomaterials in Spinal Implants: A Review
The aim to find the perfect biomaterial for spinal implant has been the focus of spinal research since the 1800s. Spinal surgery and the devices used therein have undergone a constant evolution in order to meet the needs of surgeons who have continued to further understand the biomechanical principl...
Gespeichert in:
Veröffentlicht in: | Neurospine 2020, 17(1), , pp.101-110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim to find the perfect biomaterial for spinal implant has been the focus of spinal research since the 1800s. Spinal surgery and the devices used therein have undergone a constant evolution in order to meet the needs of surgeons who have continued to further understand the biomechanical principles of spinal stability and have improved as new technologies and materials are available for production use. The perfect biomaterial would be one that is biologically inert/compatible, has a Young's modulus similar to that of the bone where it is implanted, high tensile strength, stiffness, fatigue strength, and low artifacts on imaging. Today, the materials that have been most commonly used include stainless steel, titanium, cobalt chrome, nitinol (a nickel titanium alloy), tantalum, and polyetheretherketone in rods, screws, cages, and plates. Current advancements such as 3-dimensional printing, the ProDisc-L and ProDisc-C, the ApiFix, and the Mobi-C which all aim to improve range of motion, reduce pain, and improve patient satisfaction. Spine surgeons should remain vigilant regarding the current literature and technological advancements in spinal materials and procedures. The progression of spinal implant materials for cages, rods, screws, and plates with advantages and disadvantages for each material will be discussed. |
---|---|
ISSN: | 2586-6583 2586-6591 |
DOI: | 10.14245/ns.1938296.148 |