Ethical dilemmas posed by mobile health and machine learning in psychiatry research
The application of digital technology to psychiatry research is rapidly leading to new discoveries and capabilities in the field of mobile health. However, the increase in opportunities to passively collect vast amounts of detailed information on study participants coupled with advances in statistic...
Gespeichert in:
Veröffentlicht in: | Bulletin of the World Health Organization 2020-04, Vol.98 (4), p.270-276 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 4 |
container_start_page | 270 |
container_title | Bulletin of the World Health Organization |
container_volume | 98 |
creator | Jacobson, Nicholas C Bentley, Kate H Walton, Ashley Wang, Shirley B Fortgang, Rebecca G Millner, Alexander J Coombs, 3rd, Garth Rodman, Alexandra M Coppersmith, Daniel D L |
description | The application of digital technology to psychiatry research is rapidly leading to new discoveries and capabilities in the field of mobile health. However, the increase in opportunities to passively collect vast amounts of detailed information on study participants coupled with advances in statistical techniques that enable machine learning models to process such information has raised novel ethical dilemmas regarding researchers' duties to: (i) monitor adverse events and intervene accordingly; (ii) obtain fully informed, voluntary consent; (iii) protect the privacy of participants; and (iv) increase the transparency of powerful, machine learning models to ensure they can be applied ethically and fairly in psychiatric care. This review highlights emerging ethical challenges and unresolved ethical questions in mobile health research and provides recommendations on how mobile health researchers can address these issues in practice. Ultimately, the hope is that this review will facilitate continued discussion on how to achieve best practice in mobile health research within psychiatry. |
doi_str_mv | 10.2471/BLT.19.237107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7133483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389693310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-2fc0190af75d75cd8fc330ba358d8d43a13742fc44658672b42d9defeaa58cad3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVJSLZpjr0WQS69eKMvS_Kl0IRtGljIIduzGEtyrGDLW8kb2P--WjYNbeYyMPPj8R4Poc-ULJlQ9PpmvVnSZsm4okR9QAtaS1ERScQJWhAiWNVILc_Rx5yfSZlGkDN0zhnTQtZ0gR5Xcx8sDNiFwY8jZLydsne43eNxassN9x6GuccQHR7B9iF6PHhIMcQnHCLe5n05wpz2OPlcHrb_hE47GLK_fN0X6NeP1eb2Z7V-uLu__b6uLFdyrlhnCW0IdKp2qrZOd5Zz0gKvtdNOcKBciQKJ4lRLxVrBXON85wFqbcHxC_TtqLvdtaN31sc5wWC2KYyQ9maCYP7_xNCbp-nFKMq50LwIfH0VSNPvnc-zGUO2fhgg-mmXDeO6kQ3nlBT06h36PO1SLPEOlCKyuFSFqo6UTVPOyXdvZigxh7pMqcvQxhzrKvyXfxO80X_74X8AoYqROQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387064467</pqid></control><display><type>article</type><title>Ethical dilemmas posed by mobile health and machine learning in psychiatry research</title><source>MEDLINE</source><source>PAIS Index</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Sociological Abstracts</source><creator>Jacobson, Nicholas C ; Bentley, Kate H ; Walton, Ashley ; Wang, Shirley B ; Fortgang, Rebecca G ; Millner, Alexander J ; Coombs, 3rd, Garth ; Rodman, Alexandra M ; Coppersmith, Daniel D L</creator><creatorcontrib>Jacobson, Nicholas C ; Bentley, Kate H ; Walton, Ashley ; Wang, Shirley B ; Fortgang, Rebecca G ; Millner, Alexander J ; Coombs, 3rd, Garth ; Rodman, Alexandra M ; Coppersmith, Daniel D L</creatorcontrib><description>The application of digital technology to psychiatry research is rapidly leading to new discoveries and capabilities in the field of mobile health. However, the increase in opportunities to passively collect vast amounts of detailed information on study participants coupled with advances in statistical techniques that enable machine learning models to process such information has raised novel ethical dilemmas regarding researchers' duties to: (i) monitor adverse events and intervene accordingly; (ii) obtain fully informed, voluntary consent; (iii) protect the privacy of participants; and (iv) increase the transparency of powerful, machine learning models to ensure they can be applied ethically and fairly in psychiatric care. This review highlights emerging ethical challenges and unresolved ethical questions in mobile health research and provides recommendations on how mobile health researchers can address these issues in practice. Ultimately, the hope is that this review will facilitate continued discussion on how to achieve best practice in mobile health research within psychiatry.</description><identifier>ISSN: 0042-9686</identifier><identifier>EISSN: 1564-0604</identifier><identifier>DOI: 10.2471/BLT.19.237107</identifier><identifier>PMID: 32284651</identifier><language>eng</language><publisher>Switzerland: World Health Organization</publisher><subject>Algorithms ; Best practice ; Confidentiality ; Consent ; Critical incidents ; Data collection ; Decision making ; Ethical dilemmas ; Ethics ; Ethics, Research ; Health research ; Information processing ; Information seeking behavior ; Informed Consent ; Learning algorithms ; Machine learning ; Machine Learning - ethics ; Medical research ; Mental disorders ; Mental health ; Mental health services ; Multiplication ; Policy & Practice ; Privacy ; Professional practice ; Psychiatry ; Questions ; Resolvers ; Smartphones ; Statistical analysis ; Technology ; Telemedicine ; Telemedicine - ethics ; Transparency ; Wrongdoing</subject><ispartof>Bulletin of the World Health Organization, 2020-04, Vol.98 (4), p.270-276</ispartof><rights>(c) 2020 The authors; licensee World Health Organization.</rights><rights>Copyright World Health Organization Apr 2020</rights><rights>(c) 2020 The authors; licensee World Health Organization. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-2fc0190af75d75cd8fc330ba358d8d43a13742fc44658672b42d9defeaa58cad3</citedby><cites>FETCH-LOGICAL-c376t-2fc0190af75d75cd8fc330ba358d8d43a13742fc44658672b42d9defeaa58cad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133483/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7133483/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27321,27843,27901,27902,33751,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32284651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacobson, Nicholas C</creatorcontrib><creatorcontrib>Bentley, Kate H</creatorcontrib><creatorcontrib>Walton, Ashley</creatorcontrib><creatorcontrib>Wang, Shirley B</creatorcontrib><creatorcontrib>Fortgang, Rebecca G</creatorcontrib><creatorcontrib>Millner, Alexander J</creatorcontrib><creatorcontrib>Coombs, 3rd, Garth</creatorcontrib><creatorcontrib>Rodman, Alexandra M</creatorcontrib><creatorcontrib>Coppersmith, Daniel D L</creatorcontrib><title>Ethical dilemmas posed by mobile health and machine learning in psychiatry research</title><title>Bulletin of the World Health Organization</title><addtitle>Bull World Health Organ</addtitle><description>The application of digital technology to psychiatry research is rapidly leading to new discoveries and capabilities in the field of mobile health. However, the increase in opportunities to passively collect vast amounts of detailed information on study participants coupled with advances in statistical techniques that enable machine learning models to process such information has raised novel ethical dilemmas regarding researchers' duties to: (i) monitor adverse events and intervene accordingly; (ii) obtain fully informed, voluntary consent; (iii) protect the privacy of participants; and (iv) increase the transparency of powerful, machine learning models to ensure they can be applied ethically and fairly in psychiatric care. This review highlights emerging ethical challenges and unresolved ethical questions in mobile health research and provides recommendations on how mobile health researchers can address these issues in practice. Ultimately, the hope is that this review will facilitate continued discussion on how to achieve best practice in mobile health research within psychiatry.</description><subject>Algorithms</subject><subject>Best practice</subject><subject>Confidentiality</subject><subject>Consent</subject><subject>Critical incidents</subject><subject>Data collection</subject><subject>Decision making</subject><subject>Ethical dilemmas</subject><subject>Ethics</subject><subject>Ethics, Research</subject><subject>Health research</subject><subject>Information processing</subject><subject>Information seeking behavior</subject><subject>Informed Consent</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Machine Learning - ethics</subject><subject>Medical research</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>Mental health services</subject><subject>Multiplication</subject><subject>Policy & Practice</subject><subject>Privacy</subject><subject>Professional practice</subject><subject>Psychiatry</subject><subject>Questions</subject><subject>Resolvers</subject><subject>Smartphones</subject><subject>Statistical analysis</subject><subject>Technology</subject><subject>Telemedicine</subject><subject>Telemedicine - ethics</subject><subject>Transparency</subject><subject>Wrongdoing</subject><issn>0042-9686</issn><issn>1564-0604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7TQ</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1r3DAQxUVJSLZpjr0WQS69eKMvS_Kl0IRtGljIIduzGEtyrGDLW8kb2P--WjYNbeYyMPPj8R4Poc-ULJlQ9PpmvVnSZsm4okR9QAtaS1ERScQJWhAiWNVILc_Rx5yfSZlGkDN0zhnTQtZ0gR5Xcx8sDNiFwY8jZLydsne43eNxassN9x6GuccQHR7B9iF6PHhIMcQnHCLe5n05wpz2OPlcHrb_hE47GLK_fN0X6NeP1eb2Z7V-uLu__b6uLFdyrlhnCW0IdKp2qrZOd5Zz0gKvtdNOcKBciQKJ4lRLxVrBXON85wFqbcHxC_TtqLvdtaN31sc5wWC2KYyQ9maCYP7_xNCbp-nFKMq50LwIfH0VSNPvnc-zGUO2fhgg-mmXDeO6kQ3nlBT06h36PO1SLPEOlCKyuFSFqo6UTVPOyXdvZigxh7pMqcvQxhzrKvyXfxO80X_74X8AoYqROQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jacobson, Nicholas C</creator><creator>Bentley, Kate H</creator><creator>Walton, Ashley</creator><creator>Wang, Shirley B</creator><creator>Fortgang, Rebecca G</creator><creator>Millner, Alexander J</creator><creator>Coombs, 3rd, Garth</creator><creator>Rodman, Alexandra M</creator><creator>Coppersmith, Daniel D L</creator><general>World Health Organization</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7RV</scope><scope>7T2</scope><scope>7TQ</scope><scope>7U3</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88E</scope><scope>88J</scope><scope>8AF</scope><scope>8AO</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHHNA</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DHY</scope><scope>DON</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>KC-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2L</scope><scope>M2O</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200401</creationdate><title>Ethical dilemmas posed by mobile health and machine learning in psychiatry research</title><author>Jacobson, Nicholas C ; Bentley, Kate H ; Walton, Ashley ; Wang, Shirley B ; Fortgang, Rebecca G ; Millner, Alexander J ; Coombs, 3rd, Garth ; Rodman, Alexandra M ; Coppersmith, Daniel D L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-2fc0190af75d75cd8fc330ba358d8d43a13742fc44658672b42d9defeaa58cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Best practice</topic><topic>Confidentiality</topic><topic>Consent</topic><topic>Critical incidents</topic><topic>Data collection</topic><topic>Decision making</topic><topic>Ethical dilemmas</topic><topic>Ethics</topic><topic>Ethics, Research</topic><topic>Health research</topic><topic>Information processing</topic><topic>Information seeking behavior</topic><topic>Informed Consent</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Machine Learning - ethics</topic><topic>Medical research</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>Mental health services</topic><topic>Multiplication</topic><topic>Policy & Practice</topic><topic>Privacy</topic><topic>Professional practice</topic><topic>Psychiatry</topic><topic>Questions</topic><topic>Resolvers</topic><topic>Smartphones</topic><topic>Statistical analysis</topic><topic>Technology</topic><topic>Telemedicine</topic><topic>Telemedicine - ethics</topic><topic>Transparency</topic><topic>Wrongdoing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobson, Nicholas C</creatorcontrib><creatorcontrib>Bentley, Kate H</creatorcontrib><creatorcontrib>Walton, Ashley</creatorcontrib><creatorcontrib>Wang, Shirley B</creatorcontrib><creatorcontrib>Fortgang, Rebecca G</creatorcontrib><creatorcontrib>Millner, Alexander J</creatorcontrib><creatorcontrib>Coombs, 3rd, Garth</creatorcontrib><creatorcontrib>Rodman, Alexandra M</creatorcontrib><creatorcontrib>Coppersmith, Daniel D L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>PAIS Index</collection><collection>Social Services Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Sociological Abstracts</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>Politics Collection</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Politics Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Political Science Database</collection><collection>Research Library</collection><collection>Social Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bulletin of the World Health Organization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobson, Nicholas C</au><au>Bentley, Kate H</au><au>Walton, Ashley</au><au>Wang, Shirley B</au><au>Fortgang, Rebecca G</au><au>Millner, Alexander J</au><au>Coombs, 3rd, Garth</au><au>Rodman, Alexandra M</au><au>Coppersmith, Daniel D L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethical dilemmas posed by mobile health and machine learning in psychiatry research</atitle><jtitle>Bulletin of the World Health Organization</jtitle><addtitle>Bull World Health Organ</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>98</volume><issue>4</issue><spage>270</spage><epage>276</epage><pages>270-276</pages><issn>0042-9686</issn><eissn>1564-0604</eissn><abstract>The application of digital technology to psychiatry research is rapidly leading to new discoveries and capabilities in the field of mobile health. However, the increase in opportunities to passively collect vast amounts of detailed information on study participants coupled with advances in statistical techniques that enable machine learning models to process such information has raised novel ethical dilemmas regarding researchers' duties to: (i) monitor adverse events and intervene accordingly; (ii) obtain fully informed, voluntary consent; (iii) protect the privacy of participants; and (iv) increase the transparency of powerful, machine learning models to ensure they can be applied ethically and fairly in psychiatric care. This review highlights emerging ethical challenges and unresolved ethical questions in mobile health research and provides recommendations on how mobile health researchers can address these issues in practice. Ultimately, the hope is that this review will facilitate continued discussion on how to achieve best practice in mobile health research within psychiatry.</abstract><cop>Switzerland</cop><pub>World Health Organization</pub><pmid>32284651</pmid><doi>10.2471/BLT.19.237107</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0042-9686 |
ispartof | Bulletin of the World Health Organization, 2020-04, Vol.98 (4), p.270-276 |
issn | 0042-9686 1564-0604 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7133483 |
source | MEDLINE; PAIS Index; EZB-FREE-00999 freely available EZB journals; PubMed Central; Sociological Abstracts |
subjects | Algorithms Best practice Confidentiality Consent Critical incidents Data collection Decision making Ethical dilemmas Ethics Ethics, Research Health research Information processing Information seeking behavior Informed Consent Learning algorithms Machine learning Machine Learning - ethics Medical research Mental disorders Mental health Mental health services Multiplication Policy & Practice Privacy Professional practice Psychiatry Questions Resolvers Smartphones Statistical analysis Technology Telemedicine Telemedicine - ethics Transparency Wrongdoing |
title | Ethical dilemmas posed by mobile health and machine learning in psychiatry research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethical%20dilemmas%20posed%20by%20mobile%20health%20and%20machine%20learning%20in%20psychiatry%20research&rft.jtitle=Bulletin%20of%20the%20World%20Health%20Organization&rft.au=Jacobson,%20Nicholas%20C&rft.date=2020-04-01&rft.volume=98&rft.issue=4&rft.spage=270&rft.epage=276&rft.pages=270-276&rft.issn=0042-9686&rft.eissn=1564-0604&rft_id=info:doi/10.2471/BLT.19.237107&rft_dat=%3Cproquest_pubme%3E2389693310%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387064467&rft_id=info:pmid/32284651&rfr_iscdi=true |