Precise Targeting of miRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells

MicroRNAs that are overexpressed in cystic fibrosis (CF) bronchial epithelial cells (BEC) negatively regulate CFTR and nullify the beneficial effects of CFTR modulators. We hypothesized that it is possible to reverse microRNA-mediated inhibition of CFTR using CFTR-specific target site blockers (TSBs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2020-04, Vol.28 (4), p.1190-1199
Hauptverfasser: De Santi, Chiara, Fernández Fernández, Elena, Gaul, Rachel, Vencken, Sebastian, Glasgow, Arlene, Oglesby, Irene K., Hurley, Killian, Hawkins, Finn, Mitash, Nilay, Mu, Fangping, Raoof, Rana, Henshall, David C., Cutrona, Meritxell B., Simpson, Jeremy C., Harvey, Brian J., Linnane, Barry, McNally, Paul, Cryan, Sally Ann, MacLoughlin, Ronan, Swiatecka-Urban, Agnieszka, Greene, Catherine M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1199
container_issue 4
container_start_page 1190
container_title Molecular therapy
container_volume 28
creator De Santi, Chiara
Fernández Fernández, Elena
Gaul, Rachel
Vencken, Sebastian
Glasgow, Arlene
Oglesby, Irene K.
Hurley, Killian
Hawkins, Finn
Mitash, Nilay
Mu, Fangping
Raoof, Rana
Henshall, David C.
Cutrona, Meritxell B.
Simpson, Jeremy C.
Harvey, Brian J.
Linnane, Barry
McNally, Paul
Cryan, Sally Ann
MacLoughlin, Ronan
Swiatecka-Urban, Agnieszka
Greene, Catherine M.
description MicroRNAs that are overexpressed in cystic fibrosis (CF) bronchial epithelial cells (BEC) negatively regulate CFTR and nullify the beneficial effects of CFTR modulators. We hypothesized that it is possible to reverse microRNA-mediated inhibition of CFTR using CFTR-specific target site blockers (TSBs) and to develop a drug-device combination inhalation therapy for CF. Lead microRNA expression was quantified in a series of human CF and non-CF samples and in vitro models. A panel of CFTR 3′ untranslated region (UTR)-specific locked nucleic acid antisense oligonucleotide TSBs was assessed for their ability to increase CFTR expression. Their effects on CFTR activity alone or in combination with CFTR modulators were measured in CF BEC models. TSB encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles was assessed as a proof of principle of delivery into CF BECs. TSBs targeting the CFTR 3′ UTR 298–305:miR-145-5p or 166–173:miR-223-3p sites increased CFTR expression and anion channel activity and enhanced the effects of ivacaftor/lumacaftor or ivacaftor/tezacaftor in CF BECs. Biocompatible PLGA-TSB nanoparticles promoted CFTR expression in primary BECs and retained desirable biophysical characteristics following nebulization. Alone or in combination with CFTR modulators, aerosolized CFTR-targeting TSBs encapsulated in PLGA nanoparticles could represent a promising drug-device combination therapy for the treatment for CFTR dysfunction in the lung. Precise targeting of specific miR-145-5p or miR-223-3p binding sites with target site blockers encapsulated in biocompatible nanoparticles restores CFTR activity and enhances CFTR modulator action in p.Phe508del/p.Phe508del CF bronchial epithelial cells.
doi_str_mv 10.1016/j.ymthe.2020.02.001
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001620300873</els_id><sourcerecordid>S1525001620300873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-4e8ba05e6fd9e77b5824d900c732ef98ba2b5200e56fc9dd9729eae5ecbddb3e3</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMo1r8nECQv0HWSbXabC4Va6g-ISq3gXdhNZtuU7W5JYqFvb2q16I1XOWTmnJn5CDlnkDBg2eU8WS_CDBMOHBLgCQDbI0dMcNEF4L39nWZZhxx7P4-KCZkdkk7KQcg86x2R9xeH2nqkk8JNMdhmStuKLuz4aUBfbUBPx-hD66IY3k7GdKCDXdmwpraJH_TGtY2e2aKmo6WNy9QbOcS69qfkoCpqj2ff7wl5ux1Nhvfdx-e7h-HgsasFyNDtYb8sQGBWGYl5Xoo-7xkJoPOUYyVjkZeCA6DIKi2NkTmXWKBAXRpTppiekOtt7vKjXKDR2ARX1Grp7KJwa9UWVv2tNHampu1K5SzlGRMxIN0GaNd677DaeRmoDWg1V1-g1Qa0Aq4ix-i6-D125_khGxuutg0Yj19ZdMpri41GYyPxoExr_x3wCd6Okf0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Precise Targeting of miRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>De Santi, Chiara ; Fernández Fernández, Elena ; Gaul, Rachel ; Vencken, Sebastian ; Glasgow, Arlene ; Oglesby, Irene K. ; Hurley, Killian ; Hawkins, Finn ; Mitash, Nilay ; Mu, Fangping ; Raoof, Rana ; Henshall, David C. ; Cutrona, Meritxell B. ; Simpson, Jeremy C. ; Harvey, Brian J. ; Linnane, Barry ; McNally, Paul ; Cryan, Sally Ann ; MacLoughlin, Ronan ; Swiatecka-Urban, Agnieszka ; Greene, Catherine M.</creator><creatorcontrib>De Santi, Chiara ; Fernández Fernández, Elena ; Gaul, Rachel ; Vencken, Sebastian ; Glasgow, Arlene ; Oglesby, Irene K. ; Hurley, Killian ; Hawkins, Finn ; Mitash, Nilay ; Mu, Fangping ; Raoof, Rana ; Henshall, David C. ; Cutrona, Meritxell B. ; Simpson, Jeremy C. ; Harvey, Brian J. ; Linnane, Barry ; McNally, Paul ; Cryan, Sally Ann ; MacLoughlin, Ronan ; Swiatecka-Urban, Agnieszka ; Greene, Catherine M.</creatorcontrib><description>MicroRNAs that are overexpressed in cystic fibrosis (CF) bronchial epithelial cells (BEC) negatively regulate CFTR and nullify the beneficial effects of CFTR modulators. We hypothesized that it is possible to reverse microRNA-mediated inhibition of CFTR using CFTR-specific target site blockers (TSBs) and to develop a drug-device combination inhalation therapy for CF. Lead microRNA expression was quantified in a series of human CF and non-CF samples and in vitro models. A panel of CFTR 3′ untranslated region (UTR)-specific locked nucleic acid antisense oligonucleotide TSBs was assessed for their ability to increase CFTR expression. Their effects on CFTR activity alone or in combination with CFTR modulators were measured in CF BEC models. TSB encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles was assessed as a proof of principle of delivery into CF BECs. TSBs targeting the CFTR 3′ UTR 298–305:miR-145-5p or 166–173:miR-223-3p sites increased CFTR expression and anion channel activity and enhanced the effects of ivacaftor/lumacaftor or ivacaftor/tezacaftor in CF BECs. Biocompatible PLGA-TSB nanoparticles promoted CFTR expression in primary BECs and retained desirable biophysical characteristics following nebulization. Alone or in combination with CFTR modulators, aerosolized CFTR-targeting TSBs encapsulated in PLGA nanoparticles could represent a promising drug-device combination therapy for the treatment for CFTR dysfunction in the lung. Precise targeting of specific miR-145-5p or miR-223-3p binding sites with target site blockers encapsulated in biocompatible nanoparticles restores CFTR activity and enhances CFTR modulator action in p.Phe508del/p.Phe508del CF bronchial epithelial cells.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2020.02.001</identifier><identifier>PMID: 32059764</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; ALI culture ; Aminophenols - pharmacology ; Aminopyridines - pharmacology ; Benzodioxoles - pharmacology ; Bronchi - cytology ; Bronchi - drug effects ; Bronchi - metabolism ; Cells, Cultured ; CFTR ; CFTR modulators ; Child ; Child, Preschool ; Cystic Fibrosis - genetics ; Cystic Fibrosis - metabolism ; Cystic Fibrosis - therapy ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Drug Combinations ; Drug Synergism ; Epithelial Cells - cytology ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Female ; High content screening ; Humans ; Indoles - pharmacology ; Infant ; iPSC-derived CF and CFTR gene-corrected bronchosperes ; Male ; microRNA ; MicroRNAs - genetics ; Middle Aged ; Models, Biological ; Nanoparticles ; nebulised PLGA nanoparticles ; Oligonucleotides - genetics ; Oligonucleotides - pharmacology ; Original ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Primary bronchial epithelial cells ; Quinolones - pharmacology ; RNA sequencing ; target site blocker</subject><ispartof>Molecular therapy, 2020-04, Vol.28 (4), p.1190-1199</ispartof><rights>2020 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2020 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The American Society of Gene and Cell Therapy. 2020 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-4e8ba05e6fd9e77b5824d900c732ef98ba2b5200e56fc9dd9729eae5ecbddb3e3</citedby><cites>FETCH-LOGICAL-c509t-4e8ba05e6fd9e77b5824d900c732ef98ba2b5200e56fc9dd9729eae5ecbddb3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132615/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132615/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32059764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Santi, Chiara</creatorcontrib><creatorcontrib>Fernández Fernández, Elena</creatorcontrib><creatorcontrib>Gaul, Rachel</creatorcontrib><creatorcontrib>Vencken, Sebastian</creatorcontrib><creatorcontrib>Glasgow, Arlene</creatorcontrib><creatorcontrib>Oglesby, Irene K.</creatorcontrib><creatorcontrib>Hurley, Killian</creatorcontrib><creatorcontrib>Hawkins, Finn</creatorcontrib><creatorcontrib>Mitash, Nilay</creatorcontrib><creatorcontrib>Mu, Fangping</creatorcontrib><creatorcontrib>Raoof, Rana</creatorcontrib><creatorcontrib>Henshall, David C.</creatorcontrib><creatorcontrib>Cutrona, Meritxell B.</creatorcontrib><creatorcontrib>Simpson, Jeremy C.</creatorcontrib><creatorcontrib>Harvey, Brian J.</creatorcontrib><creatorcontrib>Linnane, Barry</creatorcontrib><creatorcontrib>McNally, Paul</creatorcontrib><creatorcontrib>Cryan, Sally Ann</creatorcontrib><creatorcontrib>MacLoughlin, Ronan</creatorcontrib><creatorcontrib>Swiatecka-Urban, Agnieszka</creatorcontrib><creatorcontrib>Greene, Catherine M.</creatorcontrib><title>Precise Targeting of miRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>MicroRNAs that are overexpressed in cystic fibrosis (CF) bronchial epithelial cells (BEC) negatively regulate CFTR and nullify the beneficial effects of CFTR modulators. We hypothesized that it is possible to reverse microRNA-mediated inhibition of CFTR using CFTR-specific target site blockers (TSBs) and to develop a drug-device combination inhalation therapy for CF. Lead microRNA expression was quantified in a series of human CF and non-CF samples and in vitro models. A panel of CFTR 3′ untranslated region (UTR)-specific locked nucleic acid antisense oligonucleotide TSBs was assessed for their ability to increase CFTR expression. Their effects on CFTR activity alone or in combination with CFTR modulators were measured in CF BEC models. TSB encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles was assessed as a proof of principle of delivery into CF BECs. TSBs targeting the CFTR 3′ UTR 298–305:miR-145-5p or 166–173:miR-223-3p sites increased CFTR expression and anion channel activity and enhanced the effects of ivacaftor/lumacaftor or ivacaftor/tezacaftor in CF BECs. Biocompatible PLGA-TSB nanoparticles promoted CFTR expression in primary BECs and retained desirable biophysical characteristics following nebulization. Alone or in combination with CFTR modulators, aerosolized CFTR-targeting TSBs encapsulated in PLGA nanoparticles could represent a promising drug-device combination therapy for the treatment for CFTR dysfunction in the lung. Precise targeting of specific miR-145-5p or miR-223-3p binding sites with target site blockers encapsulated in biocompatible nanoparticles restores CFTR activity and enhances CFTR modulator action in p.Phe508del/p.Phe508del CF bronchial epithelial cells.</description><subject>Adult</subject><subject>ALI culture</subject><subject>Aminophenols - pharmacology</subject><subject>Aminopyridines - pharmacology</subject><subject>Benzodioxoles - pharmacology</subject><subject>Bronchi - cytology</subject><subject>Bronchi - drug effects</subject><subject>Bronchi - metabolism</subject><subject>Cells, Cultured</subject><subject>CFTR</subject><subject>CFTR modulators</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis - metabolism</subject><subject>Cystic Fibrosis - therapy</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Drug Combinations</subject><subject>Drug Synergism</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Female</subject><subject>High content screening</subject><subject>Humans</subject><subject>Indoles - pharmacology</subject><subject>Infant</subject><subject>iPSC-derived CF and CFTR gene-corrected bronchosperes</subject><subject>Male</subject><subject>microRNA</subject><subject>MicroRNAs - genetics</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Nanoparticles</subject><subject>nebulised PLGA nanoparticles</subject><subject>Oligonucleotides - genetics</subject><subject>Oligonucleotides - pharmacology</subject><subject>Original</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Primary bronchial epithelial cells</subject><subject>Quinolones - pharmacology</subject><subject>RNA sequencing</subject><subject>target site blocker</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN1KAzEQhYMo1r8nECQv0HWSbXabC4Va6g-ISq3gXdhNZtuU7W5JYqFvb2q16I1XOWTmnJn5CDlnkDBg2eU8WS_CDBMOHBLgCQDbI0dMcNEF4L39nWZZhxx7P4-KCZkdkk7KQcg86x2R9xeH2nqkk8JNMdhmStuKLuz4aUBfbUBPx-hD66IY3k7GdKCDXdmwpraJH_TGtY2e2aKmo6WNy9QbOcS69qfkoCpqj2ff7wl5ux1Nhvfdx-e7h-HgsasFyNDtYb8sQGBWGYl5Xoo-7xkJoPOUYyVjkZeCA6DIKi2NkTmXWKBAXRpTppiekOtt7vKjXKDR2ARX1Grp7KJwa9UWVv2tNHampu1K5SzlGRMxIN0GaNd677DaeRmoDWg1V1-g1Qa0Aq4ix-i6-D125_khGxuutg0Yj19ZdMpri41GYyPxoExr_x3wCd6Okf0</recordid><startdate>20200408</startdate><enddate>20200408</enddate><creator>De Santi, Chiara</creator><creator>Fernández Fernández, Elena</creator><creator>Gaul, Rachel</creator><creator>Vencken, Sebastian</creator><creator>Glasgow, Arlene</creator><creator>Oglesby, Irene K.</creator><creator>Hurley, Killian</creator><creator>Hawkins, Finn</creator><creator>Mitash, Nilay</creator><creator>Mu, Fangping</creator><creator>Raoof, Rana</creator><creator>Henshall, David C.</creator><creator>Cutrona, Meritxell B.</creator><creator>Simpson, Jeremy C.</creator><creator>Harvey, Brian J.</creator><creator>Linnane, Barry</creator><creator>McNally, Paul</creator><creator>Cryan, Sally Ann</creator><creator>MacLoughlin, Ronan</creator><creator>Swiatecka-Urban, Agnieszka</creator><creator>Greene, Catherine M.</creator><general>Elsevier Inc</general><general>American Society of Gene &amp; Cell Therapy</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20200408</creationdate><title>Precise Targeting of miRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells</title><author>De Santi, Chiara ; Fernández Fernández, Elena ; Gaul, Rachel ; Vencken, Sebastian ; Glasgow, Arlene ; Oglesby, Irene K. ; Hurley, Killian ; Hawkins, Finn ; Mitash, Nilay ; Mu, Fangping ; Raoof, Rana ; Henshall, David C. ; Cutrona, Meritxell B. ; Simpson, Jeremy C. ; Harvey, Brian J. ; Linnane, Barry ; McNally, Paul ; Cryan, Sally Ann ; MacLoughlin, Ronan ; Swiatecka-Urban, Agnieszka ; Greene, Catherine M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-4e8ba05e6fd9e77b5824d900c732ef98ba2b5200e56fc9dd9729eae5ecbddb3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>ALI culture</topic><topic>Aminophenols - pharmacology</topic><topic>Aminopyridines - pharmacology</topic><topic>Benzodioxoles - pharmacology</topic><topic>Bronchi - cytology</topic><topic>Bronchi - drug effects</topic><topic>Bronchi - metabolism</topic><topic>Cells, Cultured</topic><topic>CFTR</topic><topic>CFTR modulators</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis - metabolism</topic><topic>Cystic Fibrosis - therapy</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Drug Combinations</topic><topic>Drug Synergism</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Female</topic><topic>High content screening</topic><topic>Humans</topic><topic>Indoles - pharmacology</topic><topic>Infant</topic><topic>iPSC-derived CF and CFTR gene-corrected bronchosperes</topic><topic>Male</topic><topic>microRNA</topic><topic>MicroRNAs - genetics</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Nanoparticles</topic><topic>nebulised PLGA nanoparticles</topic><topic>Oligonucleotides - genetics</topic><topic>Oligonucleotides - pharmacology</topic><topic>Original</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Primary bronchial epithelial cells</topic><topic>Quinolones - pharmacology</topic><topic>RNA sequencing</topic><topic>target site blocker</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Santi, Chiara</creatorcontrib><creatorcontrib>Fernández Fernández, Elena</creatorcontrib><creatorcontrib>Gaul, Rachel</creatorcontrib><creatorcontrib>Vencken, Sebastian</creatorcontrib><creatorcontrib>Glasgow, Arlene</creatorcontrib><creatorcontrib>Oglesby, Irene K.</creatorcontrib><creatorcontrib>Hurley, Killian</creatorcontrib><creatorcontrib>Hawkins, Finn</creatorcontrib><creatorcontrib>Mitash, Nilay</creatorcontrib><creatorcontrib>Mu, Fangping</creatorcontrib><creatorcontrib>Raoof, Rana</creatorcontrib><creatorcontrib>Henshall, David C.</creatorcontrib><creatorcontrib>Cutrona, Meritxell B.</creatorcontrib><creatorcontrib>Simpson, Jeremy C.</creatorcontrib><creatorcontrib>Harvey, Brian J.</creatorcontrib><creatorcontrib>Linnane, Barry</creatorcontrib><creatorcontrib>McNally, Paul</creatorcontrib><creatorcontrib>Cryan, Sally Ann</creatorcontrib><creatorcontrib>MacLoughlin, Ronan</creatorcontrib><creatorcontrib>Swiatecka-Urban, Agnieszka</creatorcontrib><creatorcontrib>Greene, Catherine M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Santi, Chiara</au><au>Fernández Fernández, Elena</au><au>Gaul, Rachel</au><au>Vencken, Sebastian</au><au>Glasgow, Arlene</au><au>Oglesby, Irene K.</au><au>Hurley, Killian</au><au>Hawkins, Finn</au><au>Mitash, Nilay</au><au>Mu, Fangping</au><au>Raoof, Rana</au><au>Henshall, David C.</au><au>Cutrona, Meritxell B.</au><au>Simpson, Jeremy C.</au><au>Harvey, Brian J.</au><au>Linnane, Barry</au><au>McNally, Paul</au><au>Cryan, Sally Ann</au><au>MacLoughlin, Ronan</au><au>Swiatecka-Urban, Agnieszka</au><au>Greene, Catherine M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Targeting of miRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2020-04-08</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>1190</spage><epage>1199</epage><pages>1190-1199</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>MicroRNAs that are overexpressed in cystic fibrosis (CF) bronchial epithelial cells (BEC) negatively regulate CFTR and nullify the beneficial effects of CFTR modulators. We hypothesized that it is possible to reverse microRNA-mediated inhibition of CFTR using CFTR-specific target site blockers (TSBs) and to develop a drug-device combination inhalation therapy for CF. Lead microRNA expression was quantified in a series of human CF and non-CF samples and in vitro models. A panel of CFTR 3′ untranslated region (UTR)-specific locked nucleic acid antisense oligonucleotide TSBs was assessed for their ability to increase CFTR expression. Their effects on CFTR activity alone or in combination with CFTR modulators were measured in CF BEC models. TSB encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles was assessed as a proof of principle of delivery into CF BECs. TSBs targeting the CFTR 3′ UTR 298–305:miR-145-5p or 166–173:miR-223-3p sites increased CFTR expression and anion channel activity and enhanced the effects of ivacaftor/lumacaftor or ivacaftor/tezacaftor in CF BECs. Biocompatible PLGA-TSB nanoparticles promoted CFTR expression in primary BECs and retained desirable biophysical characteristics following nebulization. Alone or in combination with CFTR modulators, aerosolized CFTR-targeting TSBs encapsulated in PLGA nanoparticles could represent a promising drug-device combination therapy for the treatment for CFTR dysfunction in the lung. Precise targeting of specific miR-145-5p or miR-223-3p binding sites with target site blockers encapsulated in biocompatible nanoparticles restores CFTR activity and enhances CFTR modulator action in p.Phe508del/p.Phe508del CF bronchial epithelial cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32059764</pmid><doi>10.1016/j.ymthe.2020.02.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2020-04, Vol.28 (4), p.1190-1199
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132615
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adult
ALI culture
Aminophenols - pharmacology
Aminopyridines - pharmacology
Benzodioxoles - pharmacology
Bronchi - cytology
Bronchi - drug effects
Bronchi - metabolism
Cells, Cultured
CFTR
CFTR modulators
Child
Child, Preschool
Cystic Fibrosis - genetics
Cystic Fibrosis - metabolism
Cystic Fibrosis - therapy
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Drug Combinations
Drug Synergism
Epithelial Cells - cytology
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Female
High content screening
Humans
Indoles - pharmacology
Infant
iPSC-derived CF and CFTR gene-corrected bronchosperes
Male
microRNA
MicroRNAs - genetics
Middle Aged
Models, Biological
Nanoparticles
nebulised PLGA nanoparticles
Oligonucleotides - genetics
Oligonucleotides - pharmacology
Original
Polylactic Acid-Polyglycolic Acid Copolymer - chemistry
Primary bronchial epithelial cells
Quinolones - pharmacology
RNA sequencing
target site blocker
title Precise Targeting of miRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Targeting%20of%20miRNA%20Sites%20Restores%20CFTR%20Activity%20in%20CF%20Bronchial%20Epithelial%20Cells&rft.jtitle=Molecular%20therapy&rft.au=De%20Santi,%20Chiara&rft.date=2020-04-08&rft.volume=28&rft.issue=4&rft.spage=1190&rft.epage=1199&rft.pages=1190-1199&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2020.02.001&rft_dat=%3Celsevier_pubme%3ES1525001620300873%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32059764&rft_els_id=S1525001620300873&rfr_iscdi=true