Treatment of a Mouse Model of ALS by In Vivo Base Editing
Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2020-04, Vol.28 (4), p.1177-1189 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1189 |
---|---|
container_issue | 4 |
container_start_page | 1177 |
container_title | Molecular therapy |
container_volume | 28 |
creator | Lim, Colin K.W. Gapinske, Michael Brooks, Alexandra K. Woods, Wendy S. Powell, Jackson E. Zeballos C., M. Alejandra Winter, Jackson Perez-Pinera, Pablo Gaj, Thomas |
description | Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy.
Lim et al. establish a trans-splicing system to deliver CRISPR base editors in vivo that enables treatment of a mouse model of ALS. They show that base editing can increase survival and slow the progression of disease. |
doi_str_mv | 10.1016/j.ymthe.2020.01.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001620300113</els_id><sourcerecordid>2348231708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-2bc0b8535c2e69626ff6725fced118e1901925a14554b6663ec2b5885cd30c443</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EgvL4AiSUJZsGjx27CRJIpeIlFbHgsbUcZwKu8ih2Wql_w7fwZbgUKtiwsUeeO_eODyGHQGOgIE8m8aLuXjFmlNGYQkyp2CA9EEz0KWXJ5roGuUN2vZ-ECkQmt8kOhywDoGmPnD461F2NTRe1ZaSju3bmMZwFVsuH4fghyhfRbfPx_mznbXShQ_eysJ1tXvbJVqkrjwff9x55urp8HN30x_fXt6PhuG9CfNdnuaF5KrgwDGUmmSxLOWCiNFgApAgZhYwJDYkQSS6l5GhYLtJUmIJTkyR8j5yvfKezvMbChF2drtTU2Vq7hWq1VX87jX1VL-1cDYAzkWXB4PjbwLVvM_Sdqq03WFW6wfBdxXiSMg4DmgYpX0mNa713WK5jgKoldTVRX9TVkrqioAL1MHX0e8P1zA_mIDhbCTBwmlt0yhuLTUBgHZpOFa39N-ATom6TJQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348231708</pqid></control><display><type>article</type><title>Treatment of a Mouse Model of ALS by In Vivo Base Editing</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lim, Colin K.W. ; Gapinske, Michael ; Brooks, Alexandra K. ; Woods, Wendy S. ; Powell, Jackson E. ; Zeballos C., M. Alejandra ; Winter, Jackson ; Perez-Pinera, Pablo ; Gaj, Thomas</creator><creatorcontrib>Lim, Colin K.W. ; Gapinske, Michael ; Brooks, Alexandra K. ; Woods, Wendy S. ; Powell, Jackson E. ; Zeballos C., M. Alejandra ; Winter, Jackson ; Perez-Pinera, Pablo ; Gaj, Thomas</creatorcontrib><description>Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy.
Lim et al. establish a trans-splicing system to deliver CRISPR base editors in vivo that enables treatment of a mouse model of ALS. They show that base editing can increase survival and slow the progression of disease.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2020.01.005</identifier><identifier>PMID: 31991108</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AAV ; ALS ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - therapy ; Animals ; base editor ; Codon, Nonsense ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas9 ; Dependovirus - genetics ; Disease Models, Animal ; Gene Editing ; gene therapy ; Genetic Vectors - administration & dosage ; HEK293 Cells ; Humans ; Injections, Spinal ; Inteins ; Male ; Mice ; Mice, Transgenic ; neurodegeneration ; Original ; SOD1 ; split intein ; Streptococcus pyogenes - enzymology ; Superoxide Dismutase-1 - genetics ; Trans-Splicing ; Treatment Outcome</subject><ispartof>Molecular therapy, 2020-04, Vol.28 (4), p.1177-1189</ispartof><rights>2020 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2020 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The American Society of Gene and Cell Therapy. 2020 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-2bc0b8535c2e69626ff6725fced118e1901925a14554b6663ec2b5885cd30c443</citedby><cites>FETCH-LOGICAL-c525t-2bc0b8535c2e69626ff6725fced118e1901925a14554b6663ec2b5885cd30c443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132599/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132599/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31991108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Colin K.W.</creatorcontrib><creatorcontrib>Gapinske, Michael</creatorcontrib><creatorcontrib>Brooks, Alexandra K.</creatorcontrib><creatorcontrib>Woods, Wendy S.</creatorcontrib><creatorcontrib>Powell, Jackson E.</creatorcontrib><creatorcontrib>Zeballos C., M. Alejandra</creatorcontrib><creatorcontrib>Winter, Jackson</creatorcontrib><creatorcontrib>Perez-Pinera, Pablo</creatorcontrib><creatorcontrib>Gaj, Thomas</creatorcontrib><title>Treatment of a Mouse Model of ALS by In Vivo Base Editing</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy.
Lim et al. establish a trans-splicing system to deliver CRISPR base editors in vivo that enables treatment of a mouse model of ALS. They show that base editing can increase survival and slow the progression of disease.</description><subject>AAV</subject><subject>ALS</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - therapy</subject><subject>Animals</subject><subject>base editor</subject><subject>Codon, Nonsense</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas9</subject><subject>Dependovirus - genetics</subject><subject>Disease Models, Animal</subject><subject>Gene Editing</subject><subject>gene therapy</subject><subject>Genetic Vectors - administration & dosage</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Injections, Spinal</subject><subject>Inteins</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>neurodegeneration</subject><subject>Original</subject><subject>SOD1</subject><subject>split intein</subject><subject>Streptococcus pyogenes - enzymology</subject><subject>Superoxide Dismutase-1 - genetics</subject><subject>Trans-Splicing</subject><subject>Treatment Outcome</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EgvL4AiSUJZsGjx27CRJIpeIlFbHgsbUcZwKu8ih2Wql_w7fwZbgUKtiwsUeeO_eODyGHQGOgIE8m8aLuXjFmlNGYQkyp2CA9EEz0KWXJ5roGuUN2vZ-ECkQmt8kOhywDoGmPnD461F2NTRe1ZaSju3bmMZwFVsuH4fghyhfRbfPx_mznbXShQ_eysJ1tXvbJVqkrjwff9x55urp8HN30x_fXt6PhuG9CfNdnuaF5KrgwDGUmmSxLOWCiNFgApAgZhYwJDYkQSS6l5GhYLtJUmIJTkyR8j5yvfKezvMbChF2drtTU2Vq7hWq1VX87jX1VL-1cDYAzkWXB4PjbwLVvM_Sdqq03WFW6wfBdxXiSMg4DmgYpX0mNa713WK5jgKoldTVRX9TVkrqioAL1MHX0e8P1zA_mIDhbCTBwmlt0yhuLTUBgHZpOFa39N-ATom6TJQ</recordid><startdate>20200408</startdate><enddate>20200408</enddate><creator>Lim, Colin K.W.</creator><creator>Gapinske, Michael</creator><creator>Brooks, Alexandra K.</creator><creator>Woods, Wendy S.</creator><creator>Powell, Jackson E.</creator><creator>Zeballos C., M. Alejandra</creator><creator>Winter, Jackson</creator><creator>Perez-Pinera, Pablo</creator><creator>Gaj, Thomas</creator><general>Elsevier Inc</general><general>American Society of Gene & Cell Therapy</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200408</creationdate><title>Treatment of a Mouse Model of ALS by In Vivo Base Editing</title><author>Lim, Colin K.W. ; Gapinske, Michael ; Brooks, Alexandra K. ; Woods, Wendy S. ; Powell, Jackson E. ; Zeballos C., M. Alejandra ; Winter, Jackson ; Perez-Pinera, Pablo ; Gaj, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-2bc0b8535c2e69626ff6725fced118e1901925a14554b6663ec2b5885cd30c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AAV</topic><topic>ALS</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - therapy</topic><topic>Animals</topic><topic>base editor</topic><topic>Codon, Nonsense</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas9</topic><topic>Dependovirus - genetics</topic><topic>Disease Models, Animal</topic><topic>Gene Editing</topic><topic>gene therapy</topic><topic>Genetic Vectors - administration & dosage</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Injections, Spinal</topic><topic>Inteins</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>neurodegeneration</topic><topic>Original</topic><topic>SOD1</topic><topic>split intein</topic><topic>Streptococcus pyogenes - enzymology</topic><topic>Superoxide Dismutase-1 - genetics</topic><topic>Trans-Splicing</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Colin K.W.</creatorcontrib><creatorcontrib>Gapinske, Michael</creatorcontrib><creatorcontrib>Brooks, Alexandra K.</creatorcontrib><creatorcontrib>Woods, Wendy S.</creatorcontrib><creatorcontrib>Powell, Jackson E.</creatorcontrib><creatorcontrib>Zeballos C., M. Alejandra</creatorcontrib><creatorcontrib>Winter, Jackson</creatorcontrib><creatorcontrib>Perez-Pinera, Pablo</creatorcontrib><creatorcontrib>Gaj, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Colin K.W.</au><au>Gapinske, Michael</au><au>Brooks, Alexandra K.</au><au>Woods, Wendy S.</au><au>Powell, Jackson E.</au><au>Zeballos C., M. Alejandra</au><au>Winter, Jackson</au><au>Perez-Pinera, Pablo</au><au>Gaj, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treatment of a Mouse Model of ALS by In Vivo Base Editing</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2020-04-08</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>1177</spage><epage>1189</epage><pages>1177-1189</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy.
Lim et al. establish a trans-splicing system to deliver CRISPR base editors in vivo that enables treatment of a mouse model of ALS. They show that base editing can increase survival and slow the progression of disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31991108</pmid><doi>10.1016/j.ymthe.2020.01.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2020-04, Vol.28 (4), p.1177-1189 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132599 |
source | MEDLINE; Free E-Journal (出版社公開部分のみ); PubMed Central; Alma/SFX Local Collection |
subjects | AAV ALS Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - therapy Animals base editor Codon, Nonsense CRISPR-Associated Protein 9 - metabolism CRISPR-Cas9 Dependovirus - genetics Disease Models, Animal Gene Editing gene therapy Genetic Vectors - administration & dosage HEK293 Cells Humans Injections, Spinal Inteins Male Mice Mice, Transgenic neurodegeneration Original SOD1 split intein Streptococcus pyogenes - enzymology Superoxide Dismutase-1 - genetics Trans-Splicing Treatment Outcome |
title | Treatment of a Mouse Model of ALS by In Vivo Base Editing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treatment%20of%20a%20Mouse%20Model%20of%20ALS%20by%20In%C2%A0Vivo%20Base%20Editing&rft.jtitle=Molecular%20therapy&rft.au=Lim,%20Colin%20K.W.&rft.date=2020-04-08&rft.volume=28&rft.issue=4&rft.spage=1177&rft.epage=1189&rft.pages=1177-1189&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2020.01.005&rft_dat=%3Cproquest_pubme%3E2348231708%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348231708&rft_id=info:pmid/31991108&rft_els_id=S1525001620300113&rfr_iscdi=true |