Treatment of a Mouse Model of ALS by In Vivo Base Editing

Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2020-04, Vol.28 (4), p.1177-1189
Hauptverfasser: Lim, Colin K.W., Gapinske, Michael, Brooks, Alexandra K., Woods, Wendy S., Powell, Jackson E., Zeballos C., M. Alejandra, Winter, Jackson, Perez-Pinera, Pablo, Gaj, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1189
container_issue 4
container_start_page 1177
container_title Molecular therapy
container_volume 28
creator Lim, Colin K.W.
Gapinske, Michael
Brooks, Alexandra K.
Woods, Wendy S.
Powell, Jackson E.
Zeballos C., M. Alejandra
Winter, Jackson
Perez-Pinera, Pablo
Gaj, Thomas
description Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy. Lim et al. establish a trans-splicing system to deliver CRISPR base editors in vivo that enables treatment of a mouse model of ALS. They show that base editing can increase survival and slow the progression of disease.
doi_str_mv 10.1016/j.ymthe.2020.01.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001620300113</els_id><sourcerecordid>2348231708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-2bc0b8535c2e69626ff6725fced118e1901925a14554b6663ec2b5885cd30c443</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EgvL4AiSUJZsGjx27CRJIpeIlFbHgsbUcZwKu8ih2Wql_w7fwZbgUKtiwsUeeO_eODyGHQGOgIE8m8aLuXjFmlNGYQkyp2CA9EEz0KWXJ5roGuUN2vZ-ECkQmt8kOhywDoGmPnD461F2NTRe1ZaSju3bmMZwFVsuH4fghyhfRbfPx_mznbXShQ_eysJ1tXvbJVqkrjwff9x55urp8HN30x_fXt6PhuG9CfNdnuaF5KrgwDGUmmSxLOWCiNFgApAgZhYwJDYkQSS6l5GhYLtJUmIJTkyR8j5yvfKezvMbChF2drtTU2Vq7hWq1VX87jX1VL-1cDYAzkWXB4PjbwLVvM_Sdqq03WFW6wfBdxXiSMg4DmgYpX0mNa713WK5jgKoldTVRX9TVkrqioAL1MHX0e8P1zA_mIDhbCTBwmlt0yhuLTUBgHZpOFa39N-ATom6TJQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348231708</pqid></control><display><type>article</type><title>Treatment of a Mouse Model of ALS by In Vivo Base Editing</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lim, Colin K.W. ; Gapinske, Michael ; Brooks, Alexandra K. ; Woods, Wendy S. ; Powell, Jackson E. ; Zeballos C., M. Alejandra ; Winter, Jackson ; Perez-Pinera, Pablo ; Gaj, Thomas</creator><creatorcontrib>Lim, Colin K.W. ; Gapinske, Michael ; Brooks, Alexandra K. ; Woods, Wendy S. ; Powell, Jackson E. ; Zeballos C., M. Alejandra ; Winter, Jackson ; Perez-Pinera, Pablo ; Gaj, Thomas</creatorcontrib><description>Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy. Lim et al. establish a trans-splicing system to deliver CRISPR base editors in vivo that enables treatment of a mouse model of ALS. They show that base editing can increase survival and slow the progression of disease.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2020.01.005</identifier><identifier>PMID: 31991108</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AAV ; ALS ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - therapy ; Animals ; base editor ; Codon, Nonsense ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas9 ; Dependovirus - genetics ; Disease Models, Animal ; Gene Editing ; gene therapy ; Genetic Vectors - administration &amp; dosage ; HEK293 Cells ; Humans ; Injections, Spinal ; Inteins ; Male ; Mice ; Mice, Transgenic ; neurodegeneration ; Original ; SOD1 ; split intein ; Streptococcus pyogenes - enzymology ; Superoxide Dismutase-1 - genetics ; Trans-Splicing ; Treatment Outcome</subject><ispartof>Molecular therapy, 2020-04, Vol.28 (4), p.1177-1189</ispartof><rights>2020 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2020 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The American Society of Gene and Cell Therapy. 2020 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-2bc0b8535c2e69626ff6725fced118e1901925a14554b6663ec2b5885cd30c443</citedby><cites>FETCH-LOGICAL-c525t-2bc0b8535c2e69626ff6725fced118e1901925a14554b6663ec2b5885cd30c443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132599/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132599/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31991108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Colin K.W.</creatorcontrib><creatorcontrib>Gapinske, Michael</creatorcontrib><creatorcontrib>Brooks, Alexandra K.</creatorcontrib><creatorcontrib>Woods, Wendy S.</creatorcontrib><creatorcontrib>Powell, Jackson E.</creatorcontrib><creatorcontrib>Zeballos C., M. Alejandra</creatorcontrib><creatorcontrib>Winter, Jackson</creatorcontrib><creatorcontrib>Perez-Pinera, Pablo</creatorcontrib><creatorcontrib>Gaj, Thomas</creatorcontrib><title>Treatment of a Mouse Model of ALS by In Vivo Base Editing</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy. Lim et al. establish a trans-splicing system to deliver CRISPR base editors in vivo that enables treatment of a mouse model of ALS. They show that base editing can increase survival and slow the progression of disease.</description><subject>AAV</subject><subject>ALS</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - therapy</subject><subject>Animals</subject><subject>base editor</subject><subject>Codon, Nonsense</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas9</subject><subject>Dependovirus - genetics</subject><subject>Disease Models, Animal</subject><subject>Gene Editing</subject><subject>gene therapy</subject><subject>Genetic Vectors - administration &amp; dosage</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Injections, Spinal</subject><subject>Inteins</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>neurodegeneration</subject><subject>Original</subject><subject>SOD1</subject><subject>split intein</subject><subject>Streptococcus pyogenes - enzymology</subject><subject>Superoxide Dismutase-1 - genetics</subject><subject>Trans-Splicing</subject><subject>Treatment Outcome</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EgvL4AiSUJZsGjx27CRJIpeIlFbHgsbUcZwKu8ih2Wql_w7fwZbgUKtiwsUeeO_eODyGHQGOgIE8m8aLuXjFmlNGYQkyp2CA9EEz0KWXJ5roGuUN2vZ-ECkQmt8kOhywDoGmPnD461F2NTRe1ZaSju3bmMZwFVsuH4fghyhfRbfPx_mznbXShQ_eysJ1tXvbJVqkrjwff9x55urp8HN30x_fXt6PhuG9CfNdnuaF5KrgwDGUmmSxLOWCiNFgApAgZhYwJDYkQSS6l5GhYLtJUmIJTkyR8j5yvfKezvMbChF2drtTU2Vq7hWq1VX87jX1VL-1cDYAzkWXB4PjbwLVvM_Sdqq03WFW6wfBdxXiSMg4DmgYpX0mNa713WK5jgKoldTVRX9TVkrqioAL1MHX0e8P1zA_mIDhbCTBwmlt0yhuLTUBgHZpOFa39N-ATom6TJQ</recordid><startdate>20200408</startdate><enddate>20200408</enddate><creator>Lim, Colin K.W.</creator><creator>Gapinske, Michael</creator><creator>Brooks, Alexandra K.</creator><creator>Woods, Wendy S.</creator><creator>Powell, Jackson E.</creator><creator>Zeballos C., M. Alejandra</creator><creator>Winter, Jackson</creator><creator>Perez-Pinera, Pablo</creator><creator>Gaj, Thomas</creator><general>Elsevier Inc</general><general>American Society of Gene &amp; Cell Therapy</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200408</creationdate><title>Treatment of a Mouse Model of ALS by In Vivo Base Editing</title><author>Lim, Colin K.W. ; Gapinske, Michael ; Brooks, Alexandra K. ; Woods, Wendy S. ; Powell, Jackson E. ; Zeballos C., M. Alejandra ; Winter, Jackson ; Perez-Pinera, Pablo ; Gaj, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-2bc0b8535c2e69626ff6725fced118e1901925a14554b6663ec2b5885cd30c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AAV</topic><topic>ALS</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - therapy</topic><topic>Animals</topic><topic>base editor</topic><topic>Codon, Nonsense</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas9</topic><topic>Dependovirus - genetics</topic><topic>Disease Models, Animal</topic><topic>Gene Editing</topic><topic>gene therapy</topic><topic>Genetic Vectors - administration &amp; dosage</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Injections, Spinal</topic><topic>Inteins</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>neurodegeneration</topic><topic>Original</topic><topic>SOD1</topic><topic>split intein</topic><topic>Streptococcus pyogenes - enzymology</topic><topic>Superoxide Dismutase-1 - genetics</topic><topic>Trans-Splicing</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Colin K.W.</creatorcontrib><creatorcontrib>Gapinske, Michael</creatorcontrib><creatorcontrib>Brooks, Alexandra K.</creatorcontrib><creatorcontrib>Woods, Wendy S.</creatorcontrib><creatorcontrib>Powell, Jackson E.</creatorcontrib><creatorcontrib>Zeballos C., M. Alejandra</creatorcontrib><creatorcontrib>Winter, Jackson</creatorcontrib><creatorcontrib>Perez-Pinera, Pablo</creatorcontrib><creatorcontrib>Gaj, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Colin K.W.</au><au>Gapinske, Michael</au><au>Brooks, Alexandra K.</au><au>Woods, Wendy S.</au><au>Powell, Jackson E.</au><au>Zeballos C., M. Alejandra</au><au>Winter, Jackson</au><au>Perez-Pinera, Pablo</au><au>Gaj, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treatment of a Mouse Model of ALS by In Vivo Base Editing</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2020-04-08</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>1177</spage><epage>1189</epage><pages>1177-1189</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy. Lim et al. establish a trans-splicing system to deliver CRISPR base editors in vivo that enables treatment of a mouse model of ALS. They show that base editing can increase survival and slow the progression of disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31991108</pmid><doi>10.1016/j.ymthe.2020.01.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2020-04, Vol.28 (4), p.1177-1189
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132599
source MEDLINE; Free E-Journal (出版社公開部分のみ); PubMed Central; Alma/SFX Local Collection
subjects AAV
ALS
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - therapy
Animals
base editor
Codon, Nonsense
CRISPR-Associated Protein 9 - metabolism
CRISPR-Cas9
Dependovirus - genetics
Disease Models, Animal
Gene Editing
gene therapy
Genetic Vectors - administration & dosage
HEK293 Cells
Humans
Injections, Spinal
Inteins
Male
Mice
Mice, Transgenic
neurodegeneration
Original
SOD1
split intein
Streptococcus pyogenes - enzymology
Superoxide Dismutase-1 - genetics
Trans-Splicing
Treatment Outcome
title Treatment of a Mouse Model of ALS by In Vivo Base Editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treatment%20of%20a%20Mouse%20Model%20of%20ALS%20by%20In%C2%A0Vivo%20Base%20Editing&rft.jtitle=Molecular%20therapy&rft.au=Lim,%20Colin%20K.W.&rft.date=2020-04-08&rft.volume=28&rft.issue=4&rft.spage=1177&rft.epage=1189&rft.pages=1177-1189&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2020.01.005&rft_dat=%3Cproquest_pubme%3E2348231708%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348231708&rft_id=info:pmid/31991108&rft_els_id=S1525001620300113&rfr_iscdi=true