Structural basis for DEAH-helicase activation by G-patch proteins

RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (13), p.7159-7170
Hauptverfasser: Studer, Michael K., Ivanoviac, Lazar, Weber, Marco E., Marti, Sabrina, Jonas, Stefanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7170
container_issue 13
container_start_page 7159
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Studer, Michael K.
Ivanoviac, Lazar
Weber, Marco E.
Marti, Sabrina
Jonas, Stefanie
description RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.
doi_str_mv 10.1073/pnas.1913880117
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929435</jstor_id><sourcerecordid>26929435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b890f7ab0bdc0bc979f4be7499909e29da459e946a67258c05840707aa21eac43</originalsourceid><addsrcrecordid>eNqNkd1rFDEUxYModq0--6QM-FKQaW8-ZpK8CMu2tkLBB_U5JNmMm2U2GZNMpf-9WbeuH09CIIH7O5dzchB6ieEcA6cXU9D5HEtMhQCM-SO0wCBx2zMJj9ECgPBWMMJO0LOctwAgOwFP0QklmMte9Au0_FTSbMuc9NgYnX1uhpiay6vlTbtxo7c6u0bb4u908TE05r65bidd7KaZUizOh_wcPRn0mN2Lh_sUfXl_9Xl1095-vP6wWt62ljFaWiMkDFwbMGsLxkouB2YcZ1JKkI7ItWaddJL1uuekExY6wYAD15pgpy2jp-jdYe80m51bWxdKNa2m5Hc63auovfp7EvxGfY13iuMal5C64OxhQYrfZpeL2vls3Tjq4OKcFaFcAHREiIq--QfdxjmFGq9SgrN6GFTq4kDZFHNObjiawaD29ah9Pep3PVXx-s8MR_5XHxV4ewC-OxOHbL0L1h0x2NujWAhcX3T_JeL_6ZUvPztcxTmUKn11kG5ziemoIb0kktGO_gDJkLVq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387487440</pqid></control><display><type>article</type><title>Structural basis for DEAH-helicase activation by G-patch proteins</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Studer, Michael K. ; Ivanoviac, Lazar ; Weber, Marco E. ; Marti, Sabrina ; Jonas, Stefanie</creator><creatorcontrib>Studer, Michael K. ; Ivanoviac, Lazar ; Weber, Marco E. ; Marti, Sabrina ; Jonas, Stefanie</creatorcontrib><description>RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1913880117</identifier><identifier>PMID: 32179686</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Activation ; Adenosine ; Adenosine diphosphate ; Adenosine triphosphatase ; Adenosine Triphosphatases - metabolism ; Adenosine triphosphate ; ATP ; Binding ; Biological Sciences ; Biosynthesis ; Catalysis ; DNA helicase ; Evolution ; HEK293 Cells ; Humans ; Multidisciplinary Sciences ; Mutation ; Protein Conformation ; Protein Domains ; Proteins ; Repressor Proteins - metabolism ; Ribonucleic acid ; RNA ; RNA - metabolism ; RNA helicase ; RNA Helicases - chemistry ; RNA Helicases - metabolism ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Spliceosomes ; Splicing ; Tethers ; Translocation ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7159-7170</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 31, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>49</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000523188100034</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c443t-b890f7ab0bdc0bc979f4be7499909e29da459e946a67258c05840707aa21eac43</citedby><cites>FETCH-LOGICAL-c443t-b890f7ab0bdc0bc979f4be7499909e29da459e946a67258c05840707aa21eac43</cites><orcidid>0000-0002-6742-1921 ; 0000-0001-9764-4862 ; 0000-0003-3066-3975 ; 0000-0002-8751-6741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929435$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929435$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32179686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Studer, Michael K.</creatorcontrib><creatorcontrib>Ivanoviac, Lazar</creatorcontrib><creatorcontrib>Weber, Marco E.</creatorcontrib><creatorcontrib>Marti, Sabrina</creatorcontrib><creatorcontrib>Jonas, Stefanie</creatorcontrib><title>Structural basis for DEAH-helicase activation by G-patch proteins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.</description><subject>Activation</subject><subject>Adenosine</subject><subject>Adenosine diphosphate</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine triphosphate</subject><subject>ATP</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Catalysis</subject><subject>DNA helicase</subject><subject>Evolution</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Multidisciplinary Sciences</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Repressor Proteins - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>RNA helicase</subject><subject>RNA Helicases - chemistry</subject><subject>RNA Helicases - metabolism</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Spliceosomes</subject><subject>Splicing</subject><subject>Tethers</subject><subject>Translocation</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkd1rFDEUxYModq0--6QM-FKQaW8-ZpK8CMu2tkLBB_U5JNmMm2U2GZNMpf-9WbeuH09CIIH7O5dzchB6ieEcA6cXU9D5HEtMhQCM-SO0wCBx2zMJj9ECgPBWMMJO0LOctwAgOwFP0QklmMte9Au0_FTSbMuc9NgYnX1uhpiay6vlTbtxo7c6u0bb4u908TE05r65bidd7KaZUizOh_wcPRn0mN2Lh_sUfXl_9Xl1095-vP6wWt62ljFaWiMkDFwbMGsLxkouB2YcZ1JKkI7ItWaddJL1uuekExY6wYAD15pgpy2jp-jdYe80m51bWxdKNa2m5Hc63auovfp7EvxGfY13iuMal5C64OxhQYrfZpeL2vls3Tjq4OKcFaFcAHREiIq--QfdxjmFGq9SgrN6GFTq4kDZFHNObjiawaD29ah9Pep3PVXx-s8MR_5XHxV4ewC-OxOHbL0L1h0x2NujWAhcX3T_JeL_6ZUvPztcxTmUKn11kG5ziemoIb0kktGO_gDJkLVq</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Studer, Michael K.</creator><creator>Ivanoviac, Lazar</creator><creator>Weber, Marco E.</creator><creator>Marti, Sabrina</creator><creator>Jonas, Stefanie</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6742-1921</orcidid><orcidid>https://orcid.org/0000-0001-9764-4862</orcidid><orcidid>https://orcid.org/0000-0003-3066-3975</orcidid><orcidid>https://orcid.org/0000-0002-8751-6741</orcidid></search><sort><creationdate>20200331</creationdate><title>Structural basis for DEAH-helicase activation by G-patch proteins</title><author>Studer, Michael K. ; Ivanoviac, Lazar ; Weber, Marco E. ; Marti, Sabrina ; Jonas, Stefanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b890f7ab0bdc0bc979f4be7499909e29da459e946a67258c05840707aa21eac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Adenosine</topic><topic>Adenosine diphosphate</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine triphosphate</topic><topic>ATP</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Catalysis</topic><topic>DNA helicase</topic><topic>Evolution</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Multidisciplinary Sciences</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Repressor Proteins - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>RNA helicase</topic><topic>RNA Helicases - chemistry</topic><topic>RNA Helicases - metabolism</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Spliceosomes</topic><topic>Splicing</topic><topic>Tethers</topic><topic>Translocation</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Studer, Michael K.</creatorcontrib><creatorcontrib>Ivanoviac, Lazar</creatorcontrib><creatorcontrib>Weber, Marco E.</creatorcontrib><creatorcontrib>Marti, Sabrina</creatorcontrib><creatorcontrib>Jonas, Stefanie</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Studer, Michael K.</au><au>Ivanoviac, Lazar</au><au>Weber, Marco E.</au><au>Marti, Sabrina</au><au>Jonas, Stefanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for DEAH-helicase activation by G-patch proteins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-31</date><risdate>2020</risdate><volume>117</volume><issue>13</issue><spage>7159</spage><epage>7170</epage><pages>7159-7170</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>32179686</pmid><doi>10.1073/pnas.1913880117</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6742-1921</orcidid><orcidid>https://orcid.org/0000-0001-9764-4862</orcidid><orcidid>https://orcid.org/0000-0003-3066-3975</orcidid><orcidid>https://orcid.org/0000-0002-8751-6741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7159-7170
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132122
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Activation
Adenosine
Adenosine diphosphate
Adenosine triphosphatase
Adenosine Triphosphatases - metabolism
Adenosine triphosphate
ATP
Binding
Biological Sciences
Biosynthesis
Catalysis
DNA helicase
Evolution
HEK293 Cells
Humans
Multidisciplinary Sciences
Mutation
Protein Conformation
Protein Domains
Proteins
Repressor Proteins - metabolism
Ribonucleic acid
RNA
RNA - metabolism
RNA helicase
RNA Helicases - chemistry
RNA Helicases - metabolism
Science & Technology
Science & Technology - Other Topics
Spliceosomes
Splicing
Tethers
Translocation
Yeast
title Structural basis for DEAH-helicase activation by G-patch proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20DEAH-helicase%20activation%20by%20G-patch%20proteins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Studer,%20Michael%20K.&rft.date=2020-03-31&rft.volume=117&rft.issue=13&rft.spage=7159&rft.epage=7170&rft.pages=7159-7170&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1913880117&rft_dat=%3Cjstor_proqu%3E26929435%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387487440&rft_id=info:pmid/32179686&rft_jstor_id=26929435&rfr_iscdi=true