Structural basis for DEAH-helicase activation by G-patch proteins
RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conform...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (13), p.7159-7170 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7170 |
---|---|
container_issue | 13 |
container_start_page | 7159 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Studer, Michael K. Ivanoviac, Lazar Weber, Marco E. Marti, Sabrina Jonas, Stefanie |
description | RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis. |
doi_str_mv | 10.1073/pnas.1913880117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929435</jstor_id><sourcerecordid>26929435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b890f7ab0bdc0bc979f4be7499909e29da459e946a67258c05840707aa21eac43</originalsourceid><addsrcrecordid>eNqNkd1rFDEUxYModq0--6QM-FKQaW8-ZpK8CMu2tkLBB_U5JNmMm2U2GZNMpf-9WbeuH09CIIH7O5dzchB6ieEcA6cXU9D5HEtMhQCM-SO0wCBx2zMJj9ECgPBWMMJO0LOctwAgOwFP0QklmMte9Au0_FTSbMuc9NgYnX1uhpiay6vlTbtxo7c6u0bb4u908TE05r65bidd7KaZUizOh_wcPRn0mN2Lh_sUfXl_9Xl1095-vP6wWt62ljFaWiMkDFwbMGsLxkouB2YcZ1JKkI7ItWaddJL1uuekExY6wYAD15pgpy2jp-jdYe80m51bWxdKNa2m5Hc63auovfp7EvxGfY13iuMal5C64OxhQYrfZpeL2vls3Tjq4OKcFaFcAHREiIq--QfdxjmFGq9SgrN6GFTq4kDZFHNObjiawaD29ah9Pep3PVXx-s8MR_5XHxV4ewC-OxOHbL0L1h0x2NujWAhcX3T_JeL_6ZUvPztcxTmUKn11kG5ziemoIb0kktGO_gDJkLVq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387487440</pqid></control><display><type>article</type><title>Structural basis for DEAH-helicase activation by G-patch proteins</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Studer, Michael K. ; Ivanoviac, Lazar ; Weber, Marco E. ; Marti, Sabrina ; Jonas, Stefanie</creator><creatorcontrib>Studer, Michael K. ; Ivanoviac, Lazar ; Weber, Marco E. ; Marti, Sabrina ; Jonas, Stefanie</creatorcontrib><description>RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1913880117</identifier><identifier>PMID: 32179686</identifier><language>eng</language><publisher>WASHINGTON: National Academy of Sciences</publisher><subject>Activation ; Adenosine ; Adenosine diphosphate ; Adenosine triphosphatase ; Adenosine Triphosphatases - metabolism ; Adenosine triphosphate ; ATP ; Binding ; Biological Sciences ; Biosynthesis ; Catalysis ; DNA helicase ; Evolution ; HEK293 Cells ; Humans ; Multidisciplinary Sciences ; Mutation ; Protein Conformation ; Protein Domains ; Proteins ; Repressor Proteins - metabolism ; Ribonucleic acid ; RNA ; RNA - metabolism ; RNA helicase ; RNA Helicases - chemistry ; RNA Helicases - metabolism ; Science & Technology ; Science & Technology - Other Topics ; Spliceosomes ; Splicing ; Tethers ; Translocation ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7159-7170</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 31, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>49</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000523188100034</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c443t-b890f7ab0bdc0bc979f4be7499909e29da459e946a67258c05840707aa21eac43</citedby><cites>FETCH-LOGICAL-c443t-b890f7ab0bdc0bc979f4be7499909e29da459e946a67258c05840707aa21eac43</cites><orcidid>0000-0002-6742-1921 ; 0000-0001-9764-4862 ; 0000-0003-3066-3975 ; 0000-0002-8751-6741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929435$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929435$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32179686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Studer, Michael K.</creatorcontrib><creatorcontrib>Ivanoviac, Lazar</creatorcontrib><creatorcontrib>Weber, Marco E.</creatorcontrib><creatorcontrib>Marti, Sabrina</creatorcontrib><creatorcontrib>Jonas, Stefanie</creatorcontrib><title>Structural basis for DEAH-helicase activation by G-patch proteins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>P NATL ACAD SCI USA</addtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><description>RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.</description><subject>Activation</subject><subject>Adenosine</subject><subject>Adenosine diphosphate</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine triphosphate</subject><subject>ATP</subject><subject>Binding</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Catalysis</subject><subject>DNA helicase</subject><subject>Evolution</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Multidisciplinary Sciences</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Repressor Proteins - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>RNA helicase</subject><subject>RNA Helicases - chemistry</subject><subject>RNA Helicases - metabolism</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Spliceosomes</subject><subject>Splicing</subject><subject>Tethers</subject><subject>Translocation</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkd1rFDEUxYModq0--6QM-FKQaW8-ZpK8CMu2tkLBB_U5JNmMm2U2GZNMpf-9WbeuH09CIIH7O5dzchB6ieEcA6cXU9D5HEtMhQCM-SO0wCBx2zMJj9ECgPBWMMJO0LOctwAgOwFP0QklmMte9Au0_FTSbMuc9NgYnX1uhpiay6vlTbtxo7c6u0bb4u908TE05r65bidd7KaZUizOh_wcPRn0mN2Lh_sUfXl_9Xl1095-vP6wWt62ljFaWiMkDFwbMGsLxkouB2YcZ1JKkI7ItWaddJL1uuekExY6wYAD15pgpy2jp-jdYe80m51bWxdKNa2m5Hc63auovfp7EvxGfY13iuMal5C64OxhQYrfZpeL2vls3Tjq4OKcFaFcAHREiIq--QfdxjmFGq9SgrN6GFTq4kDZFHNObjiawaD29ah9Pep3PVXx-s8MR_5XHxV4ewC-OxOHbL0L1h0x2NujWAhcX3T_JeL_6ZUvPztcxTmUKn11kG5ziemoIb0kktGO_gDJkLVq</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Studer, Michael K.</creator><creator>Ivanoviac, Lazar</creator><creator>Weber, Marco E.</creator><creator>Marti, Sabrina</creator><creator>Jonas, Stefanie</creator><general>National Academy of Sciences</general><general>Natl Acad Sciences</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6742-1921</orcidid><orcidid>https://orcid.org/0000-0001-9764-4862</orcidid><orcidid>https://orcid.org/0000-0003-3066-3975</orcidid><orcidid>https://orcid.org/0000-0002-8751-6741</orcidid></search><sort><creationdate>20200331</creationdate><title>Structural basis for DEAH-helicase activation by G-patch proteins</title><author>Studer, Michael K. ; Ivanoviac, Lazar ; Weber, Marco E. ; Marti, Sabrina ; Jonas, Stefanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b890f7ab0bdc0bc979f4be7499909e29da459e946a67258c05840707aa21eac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Adenosine</topic><topic>Adenosine diphosphate</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine triphosphate</topic><topic>ATP</topic><topic>Binding</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Catalysis</topic><topic>DNA helicase</topic><topic>Evolution</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Multidisciplinary Sciences</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Repressor Proteins - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>RNA helicase</topic><topic>RNA Helicases - chemistry</topic><topic>RNA Helicases - metabolism</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Spliceosomes</topic><topic>Splicing</topic><topic>Tethers</topic><topic>Translocation</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Studer, Michael K.</creatorcontrib><creatorcontrib>Ivanoviac, Lazar</creatorcontrib><creatorcontrib>Weber, Marco E.</creatorcontrib><creatorcontrib>Marti, Sabrina</creatorcontrib><creatorcontrib>Jonas, Stefanie</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Studer, Michael K.</au><au>Ivanoviac, Lazar</au><au>Weber, Marco E.</au><au>Marti, Sabrina</au><au>Jonas, Stefanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for DEAH-helicase activation by G-patch proteins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><stitle>P NATL ACAD SCI USA</stitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-31</date><risdate>2020</risdate><volume>117</volume><issue>13</issue><spage>7159</spage><epage>7170</epage><pages>7159-7170</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.</abstract><cop>WASHINGTON</cop><pub>National Academy of Sciences</pub><pmid>32179686</pmid><doi>10.1073/pnas.1913880117</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6742-1921</orcidid><orcidid>https://orcid.org/0000-0001-9764-4862</orcidid><orcidid>https://orcid.org/0000-0003-3066-3975</orcidid><orcidid>https://orcid.org/0000-0002-8751-6741</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (13), p.7159-7170 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132122 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Activation Adenosine Adenosine diphosphate Adenosine triphosphatase Adenosine Triphosphatases - metabolism Adenosine triphosphate ATP Binding Biological Sciences Biosynthesis Catalysis DNA helicase Evolution HEK293 Cells Humans Multidisciplinary Sciences Mutation Protein Conformation Protein Domains Proteins Repressor Proteins - metabolism Ribonucleic acid RNA RNA - metabolism RNA helicase RNA Helicases - chemistry RNA Helicases - metabolism Science & Technology Science & Technology - Other Topics Spliceosomes Splicing Tethers Translocation Yeast |
title | Structural basis for DEAH-helicase activation by G-patch proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20DEAH-helicase%20activation%20by%20G-patch%20proteins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Studer,%20Michael%20K.&rft.date=2020-03-31&rft.volume=117&rft.issue=13&rft.spage=7159&rft.epage=7170&rft.pages=7159-7170&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1913880117&rft_dat=%3Cjstor_proqu%3E26929435%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387487440&rft_id=info:pmid/32179686&rft_jstor_id=26929435&rfr_iscdi=true |