Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis
Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF‐β1. RACK1 is the downstream target gene of TGF‐β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2020-03, Vol.24 (6), p.3656-3668 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3668 |
---|---|
container_issue | 6 |
container_start_page | 3656 |
container_title | Journal of cellular and molecular medicine |
container_volume | 24 |
creator | Pu, Yue Liu, Yuan‐qi Zhou, Yan Qi, Yi‐fan Liao, Shi‐ping Miao, Shi‐kun Zhou, Li‐ming Wan, Li‐hong |
description | Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF‐β1. RACK1 is the downstream target gene of TGF‐β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and challenged with OVA every day for 7 days. Transformed human bronchial epithelial cells, BEAS‐2B cells were cultured and exposed to recombinant soluble human TGF‐β1 to induced apoptosis (30 ng/mL, 72 hours) and EMT (10 ng/mL, 48 hours) in vitro, respectively. siRNA and pharmacological inhibitors were used to evaluate the regulation of RACK1 protein in apoptosis and EMT. Western blotting analysis and immunostaining were used to detect the protein expressions in vivo and in vitro. Our data showed that RACK1 protein levels were significantly increased in OVA‐challenged mice, as well as TGF‐β1‐induced apoptosis and EMT of BEAS‐2B cells. Knockdown of RACK1 (siRACK1) significantly inhibited apoptosis and decreased TGF‐β1 up‐regulated EMT related protein levels (N‐cadherin and Snail) in vitro via suppression of JNK and Smad3 activation. Moreover, siSmad3 or siJNK impaired TGF‐β1‐induced N‐cadherin and Snail up‐regulation in vitro. Importantly, JNK gene silencing (siERK) also impaired the regulatory effect of TGF‐β1 on Smad3 activation. Our present data demonstrate that RACK1 is a concomitant regulator of TGF‐β1 induces airway apoptosis and EMT via JNK/Smad/Snail signalling axis. Our findings may provide a new insight into understanding the regulation mechanism of RACK1 in asthma pathogenesis. |
doi_str_mv | 10.1111/jcmm.15061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7131927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356588694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4481-13ca4dd15fe4ba54af4d41ea6592d9a5e8fdd5fe2b594815ecac93065283e4a83</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMozq8bf4AUvBFhM2mSLrkRZH47EUSvQ5aeuoy2qUmr7N-buSnqhbnJgfPw8B5ehPYJHpD4TmamqgaE44ysoS3CRdpnkrL11UwEFT20HcIMY5oRKjdRj6Y4Y0NBt9D4vNNl4l0JiSuSx7PRHUlsnWjr3_U8gca2UyhtRCoIUJvpvIpz63UdbGtdBOs80Y1rWhds2EUbhS4D7K3-HfR8efE0uu6PH65uRmfjvmFMkD6hRrM8J7wANtGc6YLljIDOuExzqTmIIs_jMp1wGXkORhtJccZTQYFpQXfQ6dLbdJMKcgN1TFSqxttK-7ly2qrfm9pO1Yt7U0NCiUyHUXC0Enj32kFoVWWDgbLUNbguqJTyjAuRSRbRwz_ozHW-judFSuIUc4YXiY6XlPEuBA_FdxiC1aIktShJfZYU4YOf8b_Rr1YiQJbAuy1h_o9K3Y7u75fSD0GAnTo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390205408</pqid></control><display><type>article</type><title>Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis</title><source>Wiley-Blackwell Journals</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Pu, Yue ; Liu, Yuan‐qi ; Zhou, Yan ; Qi, Yi‐fan ; Liao, Shi‐ping ; Miao, Shi‐kun ; Zhou, Li‐ming ; Wan, Li‐hong</creator><creatorcontrib>Pu, Yue ; Liu, Yuan‐qi ; Zhou, Yan ; Qi, Yi‐fan ; Liao, Shi‐ping ; Miao, Shi‐kun ; Zhou, Li‐ming ; Wan, Li‐hong</creatorcontrib><description>Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF‐β1. RACK1 is the downstream target gene of TGF‐β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and challenged with OVA every day for 7 days. Transformed human bronchial epithelial cells, BEAS‐2B cells were cultured and exposed to recombinant soluble human TGF‐β1 to induced apoptosis (30 ng/mL, 72 hours) and EMT (10 ng/mL, 48 hours) in vitro, respectively. siRNA and pharmacological inhibitors were used to evaluate the regulation of RACK1 protein in apoptosis and EMT. Western blotting analysis and immunostaining were used to detect the protein expressions in vivo and in vitro. Our data showed that RACK1 protein levels were significantly increased in OVA‐challenged mice, as well as TGF‐β1‐induced apoptosis and EMT of BEAS‐2B cells. Knockdown of RACK1 (siRACK1) significantly inhibited apoptosis and decreased TGF‐β1 up‐regulated EMT related protein levels (N‐cadherin and Snail) in vitro via suppression of JNK and Smad3 activation. Moreover, siSmad3 or siJNK impaired TGF‐β1‐induced N‐cadherin and Snail up‐regulation in vitro. Importantly, JNK gene silencing (siERK) also impaired the regulatory effect of TGF‐β1 on Smad3 activation. Our present data demonstrate that RACK1 is a concomitant regulator of TGF‐β1 induces airway apoptosis and EMT via JNK/Smad/Snail signalling axis. Our findings may provide a new insight into understanding the regulation mechanism of RACK1 in asthma pathogenesis.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.15061</identifier><identifier>PMID: 32064783</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Allergies ; Apoptosis ; Asthma ; Cadherins ; Epithelial cells ; epithelial mesenchymal transition (EMT) ; Experiments ; Gene silencing ; Immunoglobulins ; JNK/Smad3 ; Kinases ; Lungs ; Mesenchyme ; Original ; Pathogens ; RACK1 ; Respiratory tract ; siRNA ; Smad protein ; Smad3 protein ; TGF‐β1 ; Transforming growth factor-b1 ; Western blotting</subject><ispartof>Journal of cellular and molecular medicine, 2020-03, Vol.24 (6), p.3656-3668</ispartof><rights>2020 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4481-13ca4dd15fe4ba54af4d41ea6592d9a5e8fdd5fe2b594815ecac93065283e4a83</citedby><cites>FETCH-LOGICAL-c4481-13ca4dd15fe4ba54af4d41ea6592d9a5e8fdd5fe2b594815ecac93065283e4a83</cites><orcidid>0000-0003-0086-8857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131927/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131927/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32064783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pu, Yue</creatorcontrib><creatorcontrib>Liu, Yuan‐qi</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Qi, Yi‐fan</creatorcontrib><creatorcontrib>Liao, Shi‐ping</creatorcontrib><creatorcontrib>Miao, Shi‐kun</creatorcontrib><creatorcontrib>Zhou, Li‐ming</creatorcontrib><creatorcontrib>Wan, Li‐hong</creatorcontrib><title>Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF‐β1. RACK1 is the downstream target gene of TGF‐β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and challenged with OVA every day for 7 days. Transformed human bronchial epithelial cells, BEAS‐2B cells were cultured and exposed to recombinant soluble human TGF‐β1 to induced apoptosis (30 ng/mL, 72 hours) and EMT (10 ng/mL, 48 hours) in vitro, respectively. siRNA and pharmacological inhibitors were used to evaluate the regulation of RACK1 protein in apoptosis and EMT. Western blotting analysis and immunostaining were used to detect the protein expressions in vivo and in vitro. Our data showed that RACK1 protein levels were significantly increased in OVA‐challenged mice, as well as TGF‐β1‐induced apoptosis and EMT of BEAS‐2B cells. Knockdown of RACK1 (siRACK1) significantly inhibited apoptosis and decreased TGF‐β1 up‐regulated EMT related protein levels (N‐cadherin and Snail) in vitro via suppression of JNK and Smad3 activation. Moreover, siSmad3 or siJNK impaired TGF‐β1‐induced N‐cadherin and Snail up‐regulation in vitro. Importantly, JNK gene silencing (siERK) also impaired the regulatory effect of TGF‐β1 on Smad3 activation. Our present data demonstrate that RACK1 is a concomitant regulator of TGF‐β1 induces airway apoptosis and EMT via JNK/Smad/Snail signalling axis. Our findings may provide a new insight into understanding the regulation mechanism of RACK1 in asthma pathogenesis.</description><subject>Allergies</subject><subject>Apoptosis</subject><subject>Asthma</subject><subject>Cadherins</subject><subject>Epithelial cells</subject><subject>epithelial mesenchymal transition (EMT)</subject><subject>Experiments</subject><subject>Gene silencing</subject><subject>Immunoglobulins</subject><subject>JNK/Smad3</subject><subject>Kinases</subject><subject>Lungs</subject><subject>Mesenchyme</subject><subject>Original</subject><subject>Pathogens</subject><subject>RACK1</subject><subject>Respiratory tract</subject><subject>siRNA</subject><subject>Smad protein</subject><subject>Smad3 protein</subject><subject>TGF‐β1</subject><subject>Transforming growth factor-b1</subject><subject>Western blotting</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1LwzAUhoMozq8bf4AUvBFhM2mSLrkRZH47EUSvQ5aeuoy2qUmr7N-buSnqhbnJgfPw8B5ehPYJHpD4TmamqgaE44ysoS3CRdpnkrL11UwEFT20HcIMY5oRKjdRj6Y4Y0NBt9D4vNNl4l0JiSuSx7PRHUlsnWjr3_U8gca2UyhtRCoIUJvpvIpz63UdbGtdBOs80Y1rWhds2EUbhS4D7K3-HfR8efE0uu6PH65uRmfjvmFMkD6hRrM8J7wANtGc6YLljIDOuExzqTmIIs_jMp1wGXkORhtJccZTQYFpQXfQ6dLbdJMKcgN1TFSqxttK-7ly2qrfm9pO1Yt7U0NCiUyHUXC0Enj32kFoVWWDgbLUNbguqJTyjAuRSRbRwz_ozHW-judFSuIUc4YXiY6XlPEuBA_FdxiC1aIktShJfZYU4YOf8b_Rr1YiQJbAuy1h_o9K3Y7u75fSD0GAnTo</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Pu, Yue</creator><creator>Liu, Yuan‐qi</creator><creator>Zhou, Yan</creator><creator>Qi, Yi‐fan</creator><creator>Liao, Shi‐ping</creator><creator>Miao, Shi‐kun</creator><creator>Zhou, Li‐ming</creator><creator>Wan, Li‐hong</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0086-8857</orcidid></search><sort><creationdate>202003</creationdate><title>Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis</title><author>Pu, Yue ; Liu, Yuan‐qi ; Zhou, Yan ; Qi, Yi‐fan ; Liao, Shi‐ping ; Miao, Shi‐kun ; Zhou, Li‐ming ; Wan, Li‐hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4481-13ca4dd15fe4ba54af4d41ea6592d9a5e8fdd5fe2b594815ecac93065283e4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allergies</topic><topic>Apoptosis</topic><topic>Asthma</topic><topic>Cadherins</topic><topic>Epithelial cells</topic><topic>epithelial mesenchymal transition (EMT)</topic><topic>Experiments</topic><topic>Gene silencing</topic><topic>Immunoglobulins</topic><topic>JNK/Smad3</topic><topic>Kinases</topic><topic>Lungs</topic><topic>Mesenchyme</topic><topic>Original</topic><topic>Pathogens</topic><topic>RACK1</topic><topic>Respiratory tract</topic><topic>siRNA</topic><topic>Smad protein</topic><topic>Smad3 protein</topic><topic>TGF‐β1</topic><topic>Transforming growth factor-b1</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Yue</creatorcontrib><creatorcontrib>Liu, Yuan‐qi</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Qi, Yi‐fan</creatorcontrib><creatorcontrib>Liao, Shi‐ping</creatorcontrib><creatorcontrib>Miao, Shi‐kun</creatorcontrib><creatorcontrib>Zhou, Li‐ming</creatorcontrib><creatorcontrib>Wan, Li‐hong</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Yue</au><au>Liu, Yuan‐qi</au><au>Zhou, Yan</au><au>Qi, Yi‐fan</au><au>Liao, Shi‐ping</au><au>Miao, Shi‐kun</au><au>Zhou, Li‐ming</au><au>Wan, Li‐hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2020-03</date><risdate>2020</risdate><volume>24</volume><issue>6</issue><spage>3656</spage><epage>3668</epage><pages>3656-3668</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Airway epithelial apoptosis and epithelial mesenchymal transition (EMT) are two crucial components of asthma pathogenesis, concomitantly mediated by TGF‐β1. RACK1 is the downstream target gene of TGF‐β1 shown to enhancement in asthma mice in our previous study. Balb/c mice were sensitized twice and challenged with OVA every day for 7 days. Transformed human bronchial epithelial cells, BEAS‐2B cells were cultured and exposed to recombinant soluble human TGF‐β1 to induced apoptosis (30 ng/mL, 72 hours) and EMT (10 ng/mL, 48 hours) in vitro, respectively. siRNA and pharmacological inhibitors were used to evaluate the regulation of RACK1 protein in apoptosis and EMT. Western blotting analysis and immunostaining were used to detect the protein expressions in vivo and in vitro. Our data showed that RACK1 protein levels were significantly increased in OVA‐challenged mice, as well as TGF‐β1‐induced apoptosis and EMT of BEAS‐2B cells. Knockdown of RACK1 (siRACK1) significantly inhibited apoptosis and decreased TGF‐β1 up‐regulated EMT related protein levels (N‐cadherin and Snail) in vitro via suppression of JNK and Smad3 activation. Moreover, siSmad3 or siJNK impaired TGF‐β1‐induced N‐cadherin and Snail up‐regulation in vitro. Importantly, JNK gene silencing (siERK) also impaired the regulatory effect of TGF‐β1 on Smad3 activation. Our present data demonstrate that RACK1 is a concomitant regulator of TGF‐β1 induces airway apoptosis and EMT via JNK/Smad/Snail signalling axis. Our findings may provide a new insight into understanding the regulation mechanism of RACK1 in asthma pathogenesis.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>32064783</pmid><doi>10.1111/jcmm.15061</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0086-8857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2020-03, Vol.24 (6), p.3656-3668 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7131927 |
source | Wiley-Blackwell Journals; Open Access: Wiley-Blackwell Open Access Journals; Free E-Journal (出版社公開部分のみ); DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Allergies Apoptosis Asthma Cadherins Epithelial cells epithelial mesenchymal transition (EMT) Experiments Gene silencing Immunoglobulins JNK/Smad3 Kinases Lungs Mesenchyme Original Pathogens RACK1 Respiratory tract siRNA Smad protein Smad3 protein TGF‐β1 Transforming growth factor-b1 Western blotting |
title | Dual role of RACK1 in airway epithelial mesenchymal transition and apoptosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20role%20of%20RACK1%20in%20airway%20epithelial%20mesenchymal%20transition%20and%20apoptosis&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Pu,%20Yue&rft.date=2020-03&rft.volume=24&rft.issue=6&rft.spage=3656&rft.epage=3668&rft.pages=3656-3668&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.15061&rft_dat=%3Cproquest_pubme%3E2356588694%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390205408&rft_id=info:pmid/32064783&rfr_iscdi=true |