A Novel Therapeutic and Prophylactic Vaccine against Tuberculosis Using the Cynomolgus Monkey Model and Mouse Model
We have developed a novel tuberculosis (TB) vaccine; a combination of the DNA vaccines expressing mycobacterial heat shock protein 65 (HSP65) and interleukin 12 (IL-12) delivered by the hemagglutinating virus of Japan (HVJ)-envelope and –liposome (HSP65+IL-12/HVJ). This vaccine provided remarkable p...
Gespeichert in:
Veröffentlicht in: | Procedia in vaccinology 2011, Vol.4, p.42-49 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed a novel tuberculosis (TB) vaccine; a combination of the DNA vaccines expressing mycobacterial heat shock protein 65 (HSP65) and interleukin 12 (IL-12) delivered by the hemagglutinating virus of Japan (HVJ)-envelope and –liposome (HSP65+IL-12/HVJ). This vaccine provided remarkable protective efficacy in mouse model compared to the BCG. This vaccine also provided therapeutic efficacy against multi-drug resistant TB (MDR-TB) and extremely drug resistant TB (XDR-TB) in murine models. Furthermore, we extended our studies to a cynomolgus monkey model, which is currently the best animal model of human tuberculosis. This novel vaccine provided a higher level of the protective efficacy than BCG based upon the assessment of mortality. The BCG prime and HSP65+IL-12/HVJ vaccine (boost) by the prime-boost method showed a synergistic prophylactic effect in the monkey. Furthermore, this vaccine exerted therapeutic efficacy (100% survival) and augmentation of immune responses in the TB-infected monkeys.HVJ-Envelope/HSP65 DNA+IL-12 DNA vaccine increased the body weight of TB-infected monkeys, improved the ESR, and augmented the immuneresponses (proliferation of PBL and IL-2 production). The enhancement of IL-2 production from monkeys treated with this vaccine was correlated with the therapeutic efficacy of the vaccine. These data indicate that our novel DNA vaccine might be useful against Mycobacterium tuberculosis including XDR-TB and MDR-TB for human therapeutic clinical trials. |
---|---|
ISSN: | 1877-282X 1877-282X |
DOI: | 10.1016/j.provac.2011.07.007 |