Oxidant/Antioxidant Profile in the Thoracic Aneurysm of Patients with the Loeys-Dietz Syndrome
Patients with the Loeys-Dietz syndrome (LDS) have mutations in the TGF-βR1, TGF-βR2, and SMAD3 genes. However, little is known about the redox homeostasis in the thoracic aortic aneurysms (TAA) they develop. Here, we evaluate the oxidant/antioxidant profile in the TAA tissue from LDS patients and co...
Gespeichert in:
Veröffentlicht in: | Oxidative medicine and cellular longevity 2020, Vol.2020 (2020), p.1-17 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Oxidative medicine and cellular longevity |
container_volume | 2020 |
creator | Pérez-Torres, Israel Fuentevilla-Alvárez, Giovanny Gamboa, Ricardo Castrejón-Tellez, Vicente Vásquez, Xicoténcatl Díaz-Galindo, Jorge A. Guarner Lans, Verónica Manzano-Pech, Linaloe Soto, María Elena Huesca, Claudia |
description | Patients with the Loeys-Dietz syndrome (LDS) have mutations in the TGF-βR1, TGF-βR2, and SMAD3 genes. However, little is known about the redox homeostasis in the thoracic aortic aneurysms (TAA) they develop. Here, we evaluate the oxidant/antioxidant profile in the TAA tissue from LDS patients and compare it with that in nondamaged aortic tissue from control (C) subjects. We evaluate the enzymatic activities of glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) isoforms, and thioredoxin reductase (TrxR). We also analyze some antioxidants from a nonenzymatic system such as selenium (Se), glutathione (GSH), and total antioxidant capacity (TAC). Oxidative stress markers such as lipid peroxidation and carbonylation, as well as xanthine oxidase (ORX) and nuclear factor erythroid 2-related factor 2 (Nrf2) expressions, were also evaluated. TAA from LDS patients showed a decrease in GSH, Se, TAC, GPx, GST, CAT, and TrxR. The SOD activity and ORX expressions were increased, but the Nrf2 expression was decreased. The results suggest that the redox homeostasis is altered in the TAA from LDS patients, favoring ROS overproduction that contributes to the decrease in GSH and TAC and leads to LPO and carbonylation. The decrease in Se and Nrf2 alters the activity and/or expression of some antioxidant enzymes, thus favoring a positive feedback oxidative background that contributes to the TAA formation. |
doi_str_mv | 10.1155/2020/5392454 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7128053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A625235510</galeid><sourcerecordid>A625235510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-f29da65c300e957f847aa922d79a428d93e81777552b3ec91d47334c8998dbf93</originalsourceid><addsrcrecordid>eNqN0c1rFDEYBvAgiq2rN88y4EWo4-ZzklyEpa1VWGjBejVkM-90UmaSNpmxrn99Z7vrVj15ygv58SQvD0KvCf5AiBBziimeC6YpF_wJOiSa0xJrzZ_uZ4wP0IucrzGuGOXkOTpglEqmeXWIvp__9LUNw3wRBh-3c3GRYuM7KHwohhaKyzYm67wrFgHGtM59EZviwg4ewpCLOz-0D2wZYZ3LEw_Dr-LrOtQp9vASPWtsl-HV7pyhb59OL48_l8vzsy_Hi2XpuNZD2VBd20o4hjFoIRvFpbWa0lpqy6mqNQNFpJRC0BUDp0nNJWPcKa1VvWo0m6GP29ybcdVD7aafJduZm-R7m9YmWm_-vgm-NVfxh5GEKizYFPBuF5Di7Qh5ML3PDrrOBohjNpQppUilJztDb_-h13FMYVpvoyrCKk3ko7qyHRgfmji96zahZlFRQZkQBE_q_Va5FHNO0Oy_TLDZ1Gs29ZpdvRN_8-eae_y7zwkcbUHrQ23v_H_GwWSgsY-aYq4YZ_diJbVh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386136917</pqid></control><display><type>article</type><title>Oxidant/Antioxidant Profile in the Thoracic Aneurysm of Patients with the Loeys-Dietz Syndrome</title><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pérez-Torres, Israel ; Fuentevilla-Alvárez, Giovanny ; Gamboa, Ricardo ; Castrejón-Tellez, Vicente ; Vásquez, Xicoténcatl ; Díaz-Galindo, Jorge A. ; Guarner Lans, Verónica ; Manzano-Pech, Linaloe ; Soto, María Elena ; Huesca, Claudia</creator><contributor>Mahmoud, Ayman M. ; Ayman M Mahmoud</contributor><creatorcontrib>Pérez-Torres, Israel ; Fuentevilla-Alvárez, Giovanny ; Gamboa, Ricardo ; Castrejón-Tellez, Vicente ; Vásquez, Xicoténcatl ; Díaz-Galindo, Jorge A. ; Guarner Lans, Verónica ; Manzano-Pech, Linaloe ; Soto, María Elena ; Huesca, Claudia ; Mahmoud, Ayman M. ; Ayman M Mahmoud</creatorcontrib><description>Patients with the Loeys-Dietz syndrome (LDS) have mutations in the TGF-βR1, TGF-βR2, and SMAD3 genes. However, little is known about the redox homeostasis in the thoracic aortic aneurysms (TAA) they develop. Here, we evaluate the oxidant/antioxidant profile in the TAA tissue from LDS patients and compare it with that in nondamaged aortic tissue from control (C) subjects. We evaluate the enzymatic activities of glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) isoforms, and thioredoxin reductase (TrxR). We also analyze some antioxidants from a nonenzymatic system such as selenium (Se), glutathione (GSH), and total antioxidant capacity (TAC). Oxidative stress markers such as lipid peroxidation and carbonylation, as well as xanthine oxidase (ORX) and nuclear factor erythroid 2-related factor 2 (Nrf2) expressions, were also evaluated. TAA from LDS patients showed a decrease in GSH, Se, TAC, GPx, GST, CAT, and TrxR. The SOD activity and ORX expressions were increased, but the Nrf2 expression was decreased. The results suggest that the redox homeostasis is altered in the TAA from LDS patients, favoring ROS overproduction that contributes to the decrease in GSH and TAC and leads to LPO and carbonylation. The decrease in Se and Nrf2 alters the activity and/or expression of some antioxidant enzymes, thus favoring a positive feedback oxidative background that contributes to the TAA formation.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2020/5392454</identifier><identifier>PMID: 32273946</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Aneurysms ; Anticoagulants ; Antioxidants ; Bone morphogenetic proteins ; Cardiology ; Chromosomes ; Clopidogrel ; Coronary vessels ; Disease ; Enzymes ; Ethylenediaminetetraacetic acid ; Gene expression ; Genetic aspects ; Glutathione transferase ; Mutation ; Nitrates ; Oxidases ; Superoxide ; Surgery ; Thioredoxin ; Tomography ; Transforming growth factors</subject><ispartof>Oxidative medicine and cellular longevity, 2020, Vol.2020 (2020), p.1-17</ispartof><rights>Copyright © 2020 Maria Elena Soto et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Maria Elena Soto et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Maria Elena Soto et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-f29da65c300e957f847aa922d79a428d93e81777552b3ec91d47334c8998dbf93</citedby><cites>FETCH-LOGICAL-c499t-f29da65c300e957f847aa922d79a428d93e81777552b3ec91d47334c8998dbf93</cites><orcidid>0000-0002-2655-7590 ; 0000-0003-1332-2888 ; 0000-0001-6510-2954 ; 0000-0001-9102-4240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7128053/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7128053/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32273946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mahmoud, Ayman M.</contributor><contributor>Ayman M Mahmoud</contributor><creatorcontrib>Pérez-Torres, Israel</creatorcontrib><creatorcontrib>Fuentevilla-Alvárez, Giovanny</creatorcontrib><creatorcontrib>Gamboa, Ricardo</creatorcontrib><creatorcontrib>Castrejón-Tellez, Vicente</creatorcontrib><creatorcontrib>Vásquez, Xicoténcatl</creatorcontrib><creatorcontrib>Díaz-Galindo, Jorge A.</creatorcontrib><creatorcontrib>Guarner Lans, Verónica</creatorcontrib><creatorcontrib>Manzano-Pech, Linaloe</creatorcontrib><creatorcontrib>Soto, María Elena</creatorcontrib><creatorcontrib>Huesca, Claudia</creatorcontrib><title>Oxidant/Antioxidant Profile in the Thoracic Aneurysm of Patients with the Loeys-Dietz Syndrome</title><title>Oxidative medicine and cellular longevity</title><addtitle>Oxid Med Cell Longev</addtitle><description>Patients with the Loeys-Dietz syndrome (LDS) have mutations in the TGF-βR1, TGF-βR2, and SMAD3 genes. However, little is known about the redox homeostasis in the thoracic aortic aneurysms (TAA) they develop. Here, we evaluate the oxidant/antioxidant profile in the TAA tissue from LDS patients and compare it with that in nondamaged aortic tissue from control (C) subjects. We evaluate the enzymatic activities of glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) isoforms, and thioredoxin reductase (TrxR). We also analyze some antioxidants from a nonenzymatic system such as selenium (Se), glutathione (GSH), and total antioxidant capacity (TAC). Oxidative stress markers such as lipid peroxidation and carbonylation, as well as xanthine oxidase (ORX) and nuclear factor erythroid 2-related factor 2 (Nrf2) expressions, were also evaluated. TAA from LDS patients showed a decrease in GSH, Se, TAC, GPx, GST, CAT, and TrxR. The SOD activity and ORX expressions were increased, but the Nrf2 expression was decreased. The results suggest that the redox homeostasis is altered in the TAA from LDS patients, favoring ROS overproduction that contributes to the decrease in GSH and TAC and leads to LPO and carbonylation. The decrease in Se and Nrf2 alters the activity and/or expression of some antioxidant enzymes, thus favoring a positive feedback oxidative background that contributes to the TAA formation.</description><subject>Aneurysms</subject><subject>Anticoagulants</subject><subject>Antioxidants</subject><subject>Bone morphogenetic proteins</subject><subject>Cardiology</subject><subject>Chromosomes</subject><subject>Clopidogrel</subject><subject>Coronary vessels</subject><subject>Disease</subject><subject>Enzymes</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Glutathione transferase</subject><subject>Mutation</subject><subject>Nitrates</subject><subject>Oxidases</subject><subject>Superoxide</subject><subject>Surgery</subject><subject>Thioredoxin</subject><subject>Tomography</subject><subject>Transforming growth factors</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0c1rFDEYBvAgiq2rN88y4EWo4-ZzklyEpa1VWGjBejVkM-90UmaSNpmxrn99Z7vrVj15ygv58SQvD0KvCf5AiBBziimeC6YpF_wJOiSa0xJrzZ_uZ4wP0IucrzGuGOXkOTpglEqmeXWIvp__9LUNw3wRBh-3c3GRYuM7KHwohhaKyzYm67wrFgHGtM59EZviwg4ewpCLOz-0D2wZYZ3LEw_Dr-LrOtQp9vASPWtsl-HV7pyhb59OL48_l8vzsy_Hi2XpuNZD2VBd20o4hjFoIRvFpbWa0lpqy6mqNQNFpJRC0BUDp0nNJWPcKa1VvWo0m6GP29ybcdVD7aafJduZm-R7m9YmWm_-vgm-NVfxh5GEKizYFPBuF5Di7Qh5ML3PDrrOBohjNpQppUilJztDb_-h13FMYVpvoyrCKk3ko7qyHRgfmji96zahZlFRQZkQBE_q_Va5FHNO0Oy_TLDZ1Gs29ZpdvRN_8-eae_y7zwkcbUHrQ23v_H_GwWSgsY-aYq4YZ_diJbVh</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Pérez-Torres, Israel</creator><creator>Fuentevilla-Alvárez, Giovanny</creator><creator>Gamboa, Ricardo</creator><creator>Castrejón-Tellez, Vicente</creator><creator>Vásquez, Xicoténcatl</creator><creator>Díaz-Galindo, Jorge A.</creator><creator>Guarner Lans, Verónica</creator><creator>Manzano-Pech, Linaloe</creator><creator>Soto, María Elena</creator><creator>Huesca, Claudia</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2655-7590</orcidid><orcidid>https://orcid.org/0000-0003-1332-2888</orcidid><orcidid>https://orcid.org/0000-0001-6510-2954</orcidid><orcidid>https://orcid.org/0000-0001-9102-4240</orcidid></search><sort><creationdate>2020</creationdate><title>Oxidant/Antioxidant Profile in the Thoracic Aneurysm of Patients with the Loeys-Dietz Syndrome</title><author>Pérez-Torres, Israel ; Fuentevilla-Alvárez, Giovanny ; Gamboa, Ricardo ; Castrejón-Tellez, Vicente ; Vásquez, Xicoténcatl ; Díaz-Galindo, Jorge A. ; Guarner Lans, Verónica ; Manzano-Pech, Linaloe ; Soto, María Elena ; Huesca, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-f29da65c300e957f847aa922d79a428d93e81777552b3ec91d47334c8998dbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aneurysms</topic><topic>Anticoagulants</topic><topic>Antioxidants</topic><topic>Bone morphogenetic proteins</topic><topic>Cardiology</topic><topic>Chromosomes</topic><topic>Clopidogrel</topic><topic>Coronary vessels</topic><topic>Disease</topic><topic>Enzymes</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Glutathione transferase</topic><topic>Mutation</topic><topic>Nitrates</topic><topic>Oxidases</topic><topic>Superoxide</topic><topic>Surgery</topic><topic>Thioredoxin</topic><topic>Tomography</topic><topic>Transforming growth factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Torres, Israel</creatorcontrib><creatorcontrib>Fuentevilla-Alvárez, Giovanny</creatorcontrib><creatorcontrib>Gamboa, Ricardo</creatorcontrib><creatorcontrib>Castrejón-Tellez, Vicente</creatorcontrib><creatorcontrib>Vásquez, Xicoténcatl</creatorcontrib><creatorcontrib>Díaz-Galindo, Jorge A.</creatorcontrib><creatorcontrib>Guarner Lans, Verónica</creatorcontrib><creatorcontrib>Manzano-Pech, Linaloe</creatorcontrib><creatorcontrib>Soto, María Elena</creatorcontrib><creatorcontrib>Huesca, Claudia</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Torres, Israel</au><au>Fuentevilla-Alvárez, Giovanny</au><au>Gamboa, Ricardo</au><au>Castrejón-Tellez, Vicente</au><au>Vásquez, Xicoténcatl</au><au>Díaz-Galindo, Jorge A.</au><au>Guarner Lans, Verónica</au><au>Manzano-Pech, Linaloe</au><au>Soto, María Elena</au><au>Huesca, Claudia</au><au>Mahmoud, Ayman M.</au><au>Ayman M Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidant/Antioxidant Profile in the Thoracic Aneurysm of Patients with the Loeys-Dietz Syndrome</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><addtitle>Oxid Med Cell Longev</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>Patients with the Loeys-Dietz syndrome (LDS) have mutations in the TGF-βR1, TGF-βR2, and SMAD3 genes. However, little is known about the redox homeostasis in the thoracic aortic aneurysms (TAA) they develop. Here, we evaluate the oxidant/antioxidant profile in the TAA tissue from LDS patients and compare it with that in nondamaged aortic tissue from control (C) subjects. We evaluate the enzymatic activities of glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) isoforms, and thioredoxin reductase (TrxR). We also analyze some antioxidants from a nonenzymatic system such as selenium (Se), glutathione (GSH), and total antioxidant capacity (TAC). Oxidative stress markers such as lipid peroxidation and carbonylation, as well as xanthine oxidase (ORX) and nuclear factor erythroid 2-related factor 2 (Nrf2) expressions, were also evaluated. TAA from LDS patients showed a decrease in GSH, Se, TAC, GPx, GST, CAT, and TrxR. The SOD activity and ORX expressions were increased, but the Nrf2 expression was decreased. The results suggest that the redox homeostasis is altered in the TAA from LDS patients, favoring ROS overproduction that contributes to the decrease in GSH and TAC and leads to LPO and carbonylation. The decrease in Se and Nrf2 alters the activity and/or expression of some antioxidant enzymes, thus favoring a positive feedback oxidative background that contributes to the TAA formation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32273946</pmid><doi>10.1155/2020/5392454</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2655-7590</orcidid><orcidid>https://orcid.org/0000-0003-1332-2888</orcidid><orcidid>https://orcid.org/0000-0001-6510-2954</orcidid><orcidid>https://orcid.org/0000-0001-9102-4240</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-0900 |
ispartof | Oxidative medicine and cellular longevity, 2020, Vol.2020 (2020), p.1-17 |
issn | 1942-0900 1942-0994 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7128053 |
source | PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Aneurysms Anticoagulants Antioxidants Bone morphogenetic proteins Cardiology Chromosomes Clopidogrel Coronary vessels Disease Enzymes Ethylenediaminetetraacetic acid Gene expression Genetic aspects Glutathione transferase Mutation Nitrates Oxidases Superoxide Surgery Thioredoxin Tomography Transforming growth factors |
title | Oxidant/Antioxidant Profile in the Thoracic Aneurysm of Patients with the Loeys-Dietz Syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidant/Antioxidant%20Profile%20in%20the%20Thoracic%20Aneurysm%20of%20Patients%20with%20the%20Loeys-Dietz%20Syndrome&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=P%C3%A9rez-Torres,%20Israel&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2020/5392454&rft_dat=%3Cgale_pubme%3EA625235510%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386136917&rft_id=info:pmid/32273946&rft_galeid=A625235510&rfr_iscdi=true |