Next generation deep sequencing and vaccine design: today and tomorrow
Next generation sequencing (NGS) technologies have redefined the modus operandi in both human and microbial genetics research, allowing the unprecedented generation of very large sequencing datasets on a short time scale and at affordable costs. Vaccine development research is rapidly taking full ad...
Gespeichert in:
Veröffentlicht in: | Trends in biotechnology (Regular ed.) 2012-09, Vol.30 (9), p.443-452 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Next generation sequencing (NGS) technologies have redefined the modus operandi in both human and microbial genetics research, allowing the unprecedented generation of very large sequencing datasets on a short time scale and at affordable costs. Vaccine development research is rapidly taking full advantage of the advent of NGS. This review provides a concise summary of the current applications of NGS in relation to research seeking to develop vaccines for human infectious diseases, incorporating studies of both the pathogen and the host. We focus on rapidly mutating viral pathogens, which are major targets in current vaccine research. NGS is unraveling the complex dynamics of viral evolution and host responses against these viruses, thus contributing substantially to the likelihood of successful vaccine development. |
---|---|
ISSN: | 0167-7799 1879-3096 1879-3096 |
DOI: | 10.1016/j.tibtech.2012.05.005 |