Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer

Small-cell neuroendocrine prostate cancer (SCNPC) exhibits an aggressive clinical course and incidence rates seem to be increasing following resistance to potent androgen receptor (AR) antagonists. Currently, treatment options are limited and few model systems are available to identify new approache...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2020-04, Vol.26 (7), p.1667-1677
Hauptverfasser: Corella, Alexandra N, Cabiliza Ordonio, Ma Victoria Andrea, Coleman, Ilsa, Lucas, Jared M, Kaipainen, Arja, Nguyen, Holly M, Sondheim, Daniel, Brown, Lisha G, True, Lawrence D, Lee, John K, MacPherson, David, Nghiem, Paul, Gulati, Roman, Morrissey, Colm, Corey, Eva, Nelson, Peter S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1677
container_issue 7
container_start_page 1667
container_title Clinical cancer research
container_volume 26
creator Corella, Alexandra N
Cabiliza Ordonio, Ma Victoria Andrea
Coleman, Ilsa
Lucas, Jared M
Kaipainen, Arja
Nguyen, Holly M
Sondheim, Daniel
Brown, Lisha G
True, Lawrence D
Lee, John K
MacPherson, David
Nghiem, Paul
Gulati, Roman
Morrissey, Colm
Corey, Eva
Nelson, Peter S
description Small-cell neuroendocrine prostate cancer (SCNPC) exhibits an aggressive clinical course and incidence rates seem to be increasing following resistance to potent androgen receptor (AR) antagonists. Currently, treatment options are limited and few model systems are available to identify new approaches for treatment. We sought to evaluate commonalities between SCNPC and other aggressive neuroendocrine carcinomas to identify therapeutic targets. We generated whole transcriptome RNA-sequencing data from AR-active prostate cancers (ARPCs) and SCNPCs from tumors collected at rapid autopsy and two other neuroendocrine carcinomas, Merkel cell carcinoma (MCC), and small-cell lung cancer. We performed cross-tumor comparisons to identify conserved patterns of expression of druggable targets. We tested inhibitors to highly upregulated drug targets in a panel of prostate cancer cell lines and patient-derived xenograft (PDX) models. We identified BCL2 as highly upregulated in SCNPC compared with ARPC. Inhibitors targeting BCL2 induced apoptotic cell death in SCNPC cell lines at nanomolar concentrations while ARPC cell lines were resistant. Treatment with the BCL2 inhibitor navitoclax leads to a reduction of growth of SCNPC PDX tumors , whereas ARPC PDX models were more resistant. We identified Wee1 as a second druggable target upregulated in SCNPC. Treatment with the combination of navitoclax and the Wee1 inhibitor AZD-1775 repressed the growth of SCNPC PDX resistant to single-agent BCL2 inhibitors. The combination of BCL2 and Wee1 inhibition presents a novel therapeutic strategy for the treatment of SCNPC.
doi_str_mv 10.1158/1078-0432.CCR-19-0775
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7124974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322752729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-8d612c31b762b75832da2ef2e543f6eb7dcbb3a252eb841347a2c64c5ce428673</originalsourceid><addsrcrecordid>eNpVUctq3TAQFaEl709I8bIbJ5qRZPluAsHkBSEtTdpFNkKWx4mKr3Qr2YX-fWzyoFnNDHPmzJw5jB0BPwZQ9QlwXZdcCjxumh8lrEqutdpiu6CULgVW6tOcv2F22F7OvzkHCVxusx0BNa8qKXbZw3VHYfS9d3b0MRSxL-6fKNkNTaN3xa9pCHPV-sGPnnLhQ3G3tsNQOhqG4pamFCl00SUfqPieYh7tSEVjg6N0wD73dsh0-Br32c-L8_vmqrz5dnndnN2UTgKMZd1VgE5AqytstaoFdhapR1JS9BW1unNtKywqpLaWIKS26CrplCOJdaXFPjt94d1M7Zo6N-tJdjCb5Nc2_TPRevOxE_yTeYx_jQaUKy1ngq-vBCn-mSiPZu3zItAGilM2KBC1Qo2rGapeoG7WmhP172uAm8UXs_zcLD83sy8GVmbxZZ778v-N71NvRohnUVuLfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322752729</pqid></control><display><type>article</type><title>Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Corella, Alexandra N ; Cabiliza Ordonio, Ma Victoria Andrea ; Coleman, Ilsa ; Lucas, Jared M ; Kaipainen, Arja ; Nguyen, Holly M ; Sondheim, Daniel ; Brown, Lisha G ; True, Lawrence D ; Lee, John K ; MacPherson, David ; Nghiem, Paul ; Gulati, Roman ; Morrissey, Colm ; Corey, Eva ; Nelson, Peter S</creator><creatorcontrib>Corella, Alexandra N ; Cabiliza Ordonio, Ma Victoria Andrea ; Coleman, Ilsa ; Lucas, Jared M ; Kaipainen, Arja ; Nguyen, Holly M ; Sondheim, Daniel ; Brown, Lisha G ; True, Lawrence D ; Lee, John K ; MacPherson, David ; Nghiem, Paul ; Gulati, Roman ; Morrissey, Colm ; Corey, Eva ; Nelson, Peter S</creatorcontrib><description>Small-cell neuroendocrine prostate cancer (SCNPC) exhibits an aggressive clinical course and incidence rates seem to be increasing following resistance to potent androgen receptor (AR) antagonists. Currently, treatment options are limited and few model systems are available to identify new approaches for treatment. We sought to evaluate commonalities between SCNPC and other aggressive neuroendocrine carcinomas to identify therapeutic targets. We generated whole transcriptome RNA-sequencing data from AR-active prostate cancers (ARPCs) and SCNPCs from tumors collected at rapid autopsy and two other neuroendocrine carcinomas, Merkel cell carcinoma (MCC), and small-cell lung cancer. We performed cross-tumor comparisons to identify conserved patterns of expression of druggable targets. We tested inhibitors to highly upregulated drug targets in a panel of prostate cancer cell lines and patient-derived xenograft (PDX) models. We identified BCL2 as highly upregulated in SCNPC compared with ARPC. Inhibitors targeting BCL2 induced apoptotic cell death in SCNPC cell lines at nanomolar concentrations while ARPC cell lines were resistant. Treatment with the BCL2 inhibitor navitoclax leads to a reduction of growth of SCNPC PDX tumors , whereas ARPC PDX models were more resistant. We identified Wee1 as a second druggable target upregulated in SCNPC. Treatment with the combination of navitoclax and the Wee1 inhibitor AZD-1775 repressed the growth of SCNPC PDX resistant to single-agent BCL2 inhibitors. The combination of BCL2 and Wee1 inhibition presents a novel therapeutic strategy for the treatment of SCNPC.</description><identifier>ISSN: 1078-0432</identifier><identifier>ISSN: 1557-3265</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-19-0775</identifier><identifier>PMID: 31806643</identifier><language>eng</language><publisher>United States</publisher><subject>Androgen Receptor Antagonists - pharmacology ; Animals ; Antineoplastic Agents - pharmacology ; Apoptosis ; Carcinoma, Neuroendocrine - drug therapy ; Carcinoma, Neuroendocrine - genetics ; Carcinoma, Neuroendocrine - metabolism ; Carcinoma, Neuroendocrine - pathology ; Carcinoma, Small Cell - drug therapy ; Carcinoma, Small Cell - genetics ; Carcinoma, Small Cell - metabolism ; Carcinoma, Small Cell - pathology ; Cell Cycle Proteins - antagonists &amp; inhibitors ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humans ; Male ; Mice ; Prostatic Neoplasms, Castration-Resistant - drug therapy ; Prostatic Neoplasms, Castration-Resistant - genetics ; Prostatic Neoplasms, Castration-Resistant - metabolism ; Prostatic Neoplasms, Castration-Resistant - pathology ; Protein-Tyrosine Kinases - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-bcl-2 - antagonists &amp; inhibitors ; Signal Transduction ; Xenograft Model Antitumor Assays</subject><ispartof>Clinical cancer research, 2020-04, Vol.26 (7), p.1667-1677</ispartof><rights>2019 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-8d612c31b762b75832da2ef2e543f6eb7dcbb3a252eb841347a2c64c5ce428673</citedby><cites>FETCH-LOGICAL-c411t-8d612c31b762b75832da2ef2e543f6eb7dcbb3a252eb841347a2c64c5ce428673</cites><orcidid>0000-0003-3729-907X ; 0000-0003-2784-963X ; 0000-0002-9244-3807 ; 0000-0002-6570-2180 ; 0000-0002-7592-6567 ; 0000-0002-8404-6684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31806643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corella, Alexandra N</creatorcontrib><creatorcontrib>Cabiliza Ordonio, Ma Victoria Andrea</creatorcontrib><creatorcontrib>Coleman, Ilsa</creatorcontrib><creatorcontrib>Lucas, Jared M</creatorcontrib><creatorcontrib>Kaipainen, Arja</creatorcontrib><creatorcontrib>Nguyen, Holly M</creatorcontrib><creatorcontrib>Sondheim, Daniel</creatorcontrib><creatorcontrib>Brown, Lisha G</creatorcontrib><creatorcontrib>True, Lawrence D</creatorcontrib><creatorcontrib>Lee, John K</creatorcontrib><creatorcontrib>MacPherson, David</creatorcontrib><creatorcontrib>Nghiem, Paul</creatorcontrib><creatorcontrib>Gulati, Roman</creatorcontrib><creatorcontrib>Morrissey, Colm</creatorcontrib><creatorcontrib>Corey, Eva</creatorcontrib><creatorcontrib>Nelson, Peter S</creatorcontrib><title>Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Small-cell neuroendocrine prostate cancer (SCNPC) exhibits an aggressive clinical course and incidence rates seem to be increasing following resistance to potent androgen receptor (AR) antagonists. Currently, treatment options are limited and few model systems are available to identify new approaches for treatment. We sought to evaluate commonalities between SCNPC and other aggressive neuroendocrine carcinomas to identify therapeutic targets. We generated whole transcriptome RNA-sequencing data from AR-active prostate cancers (ARPCs) and SCNPCs from tumors collected at rapid autopsy and two other neuroendocrine carcinomas, Merkel cell carcinoma (MCC), and small-cell lung cancer. We performed cross-tumor comparisons to identify conserved patterns of expression of druggable targets. We tested inhibitors to highly upregulated drug targets in a panel of prostate cancer cell lines and patient-derived xenograft (PDX) models. We identified BCL2 as highly upregulated in SCNPC compared with ARPC. Inhibitors targeting BCL2 induced apoptotic cell death in SCNPC cell lines at nanomolar concentrations while ARPC cell lines were resistant. Treatment with the BCL2 inhibitor navitoclax leads to a reduction of growth of SCNPC PDX tumors , whereas ARPC PDX models were more resistant. We identified Wee1 as a second druggable target upregulated in SCNPC. Treatment with the combination of navitoclax and the Wee1 inhibitor AZD-1775 repressed the growth of SCNPC PDX resistant to single-agent BCL2 inhibitors. The combination of BCL2 and Wee1 inhibition presents a novel therapeutic strategy for the treatment of SCNPC.</description><subject>Androgen Receptor Antagonists - pharmacology</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Carcinoma, Neuroendocrine - drug therapy</subject><subject>Carcinoma, Neuroendocrine - genetics</subject><subject>Carcinoma, Neuroendocrine - metabolism</subject><subject>Carcinoma, Neuroendocrine - pathology</subject><subject>Carcinoma, Small Cell - drug therapy</subject><subject>Carcinoma, Small Cell - genetics</subject><subject>Carcinoma, Small Cell - metabolism</subject><subject>Carcinoma, Small Cell - pathology</subject><subject>Cell Cycle Proteins - antagonists &amp; inhibitors</subject><subject>Cell Line, Tumor</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Prostatic Neoplasms, Castration-Resistant - drug therapy</subject><subject>Prostatic Neoplasms, Castration-Resistant - genetics</subject><subject>Prostatic Neoplasms, Castration-Resistant - metabolism</subject><subject>Prostatic Neoplasms, Castration-Resistant - pathology</subject><subject>Protein-Tyrosine Kinases - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-bcl-2 - antagonists &amp; inhibitors</subject><subject>Signal Transduction</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1078-0432</issn><issn>1557-3265</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctq3TAQFaEl709I8bIbJ5qRZPluAsHkBSEtTdpFNkKWx4mKr3Qr2YX-fWzyoFnNDHPmzJw5jB0BPwZQ9QlwXZdcCjxumh8lrEqutdpiu6CULgVW6tOcv2F22F7OvzkHCVxusx0BNa8qKXbZw3VHYfS9d3b0MRSxL-6fKNkNTaN3xa9pCHPV-sGPnnLhQ3G3tsNQOhqG4pamFCl00SUfqPieYh7tSEVjg6N0wD73dsh0-Br32c-L8_vmqrz5dnndnN2UTgKMZd1VgE5AqytstaoFdhapR1JS9BW1unNtKywqpLaWIKS26CrplCOJdaXFPjt94d1M7Zo6N-tJdjCb5Nc2_TPRevOxE_yTeYx_jQaUKy1ngq-vBCn-mSiPZu3zItAGilM2KBC1Qo2rGapeoG7WmhP172uAm8UXs_zcLD83sy8GVmbxZZ778v-N71NvRohnUVuLfQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Corella, Alexandra N</creator><creator>Cabiliza Ordonio, Ma Victoria Andrea</creator><creator>Coleman, Ilsa</creator><creator>Lucas, Jared M</creator><creator>Kaipainen, Arja</creator><creator>Nguyen, Holly M</creator><creator>Sondheim, Daniel</creator><creator>Brown, Lisha G</creator><creator>True, Lawrence D</creator><creator>Lee, John K</creator><creator>MacPherson, David</creator><creator>Nghiem, Paul</creator><creator>Gulati, Roman</creator><creator>Morrissey, Colm</creator><creator>Corey, Eva</creator><creator>Nelson, Peter S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3729-907X</orcidid><orcidid>https://orcid.org/0000-0003-2784-963X</orcidid><orcidid>https://orcid.org/0000-0002-9244-3807</orcidid><orcidid>https://orcid.org/0000-0002-6570-2180</orcidid><orcidid>https://orcid.org/0000-0002-7592-6567</orcidid><orcidid>https://orcid.org/0000-0002-8404-6684</orcidid></search><sort><creationdate>20200401</creationdate><title>Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer</title><author>Corella, Alexandra N ; Cabiliza Ordonio, Ma Victoria Andrea ; Coleman, Ilsa ; Lucas, Jared M ; Kaipainen, Arja ; Nguyen, Holly M ; Sondheim, Daniel ; Brown, Lisha G ; True, Lawrence D ; Lee, John K ; MacPherson, David ; Nghiem, Paul ; Gulati, Roman ; Morrissey, Colm ; Corey, Eva ; Nelson, Peter S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-8d612c31b762b75832da2ef2e543f6eb7dcbb3a252eb841347a2c64c5ce428673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Androgen Receptor Antagonists - pharmacology</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Carcinoma, Neuroendocrine - drug therapy</topic><topic>Carcinoma, Neuroendocrine - genetics</topic><topic>Carcinoma, Neuroendocrine - metabolism</topic><topic>Carcinoma, Neuroendocrine - pathology</topic><topic>Carcinoma, Small Cell - drug therapy</topic><topic>Carcinoma, Small Cell - genetics</topic><topic>Carcinoma, Small Cell - metabolism</topic><topic>Carcinoma, Small Cell - pathology</topic><topic>Cell Cycle Proteins - antagonists &amp; inhibitors</topic><topic>Cell Line, Tumor</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Prostatic Neoplasms, Castration-Resistant - drug therapy</topic><topic>Prostatic Neoplasms, Castration-Resistant - genetics</topic><topic>Prostatic Neoplasms, Castration-Resistant - metabolism</topic><topic>Prostatic Neoplasms, Castration-Resistant - pathology</topic><topic>Protein-Tyrosine Kinases - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-bcl-2 - antagonists &amp; inhibitors</topic><topic>Signal Transduction</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corella, Alexandra N</creatorcontrib><creatorcontrib>Cabiliza Ordonio, Ma Victoria Andrea</creatorcontrib><creatorcontrib>Coleman, Ilsa</creatorcontrib><creatorcontrib>Lucas, Jared M</creatorcontrib><creatorcontrib>Kaipainen, Arja</creatorcontrib><creatorcontrib>Nguyen, Holly M</creatorcontrib><creatorcontrib>Sondheim, Daniel</creatorcontrib><creatorcontrib>Brown, Lisha G</creatorcontrib><creatorcontrib>True, Lawrence D</creatorcontrib><creatorcontrib>Lee, John K</creatorcontrib><creatorcontrib>MacPherson, David</creatorcontrib><creatorcontrib>Nghiem, Paul</creatorcontrib><creatorcontrib>Gulati, Roman</creatorcontrib><creatorcontrib>Morrissey, Colm</creatorcontrib><creatorcontrib>Corey, Eva</creatorcontrib><creatorcontrib>Nelson, Peter S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corella, Alexandra N</au><au>Cabiliza Ordonio, Ma Victoria Andrea</au><au>Coleman, Ilsa</au><au>Lucas, Jared M</au><au>Kaipainen, Arja</au><au>Nguyen, Holly M</au><au>Sondheim, Daniel</au><au>Brown, Lisha G</au><au>True, Lawrence D</au><au>Lee, John K</au><au>MacPherson, David</au><au>Nghiem, Paul</au><au>Gulati, Roman</au><au>Morrissey, Colm</au><au>Corey, Eva</au><au>Nelson, Peter S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>26</volume><issue>7</issue><spage>1667</spage><epage>1677</epage><pages>1667-1677</pages><issn>1078-0432</issn><issn>1557-3265</issn><eissn>1557-3265</eissn><abstract>Small-cell neuroendocrine prostate cancer (SCNPC) exhibits an aggressive clinical course and incidence rates seem to be increasing following resistance to potent androgen receptor (AR) antagonists. Currently, treatment options are limited and few model systems are available to identify new approaches for treatment. We sought to evaluate commonalities between SCNPC and other aggressive neuroendocrine carcinomas to identify therapeutic targets. We generated whole transcriptome RNA-sequencing data from AR-active prostate cancers (ARPCs) and SCNPCs from tumors collected at rapid autopsy and two other neuroendocrine carcinomas, Merkel cell carcinoma (MCC), and small-cell lung cancer. We performed cross-tumor comparisons to identify conserved patterns of expression of druggable targets. We tested inhibitors to highly upregulated drug targets in a panel of prostate cancer cell lines and patient-derived xenograft (PDX) models. We identified BCL2 as highly upregulated in SCNPC compared with ARPC. Inhibitors targeting BCL2 induced apoptotic cell death in SCNPC cell lines at nanomolar concentrations while ARPC cell lines were resistant. Treatment with the BCL2 inhibitor navitoclax leads to a reduction of growth of SCNPC PDX tumors , whereas ARPC PDX models were more resistant. We identified Wee1 as a second druggable target upregulated in SCNPC. Treatment with the combination of navitoclax and the Wee1 inhibitor AZD-1775 repressed the growth of SCNPC PDX resistant to single-agent BCL2 inhibitors. The combination of BCL2 and Wee1 inhibition presents a novel therapeutic strategy for the treatment of SCNPC.</abstract><cop>United States</cop><pmid>31806643</pmid><doi>10.1158/1078-0432.CCR-19-0775</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3729-907X</orcidid><orcidid>https://orcid.org/0000-0003-2784-963X</orcidid><orcidid>https://orcid.org/0000-0002-9244-3807</orcidid><orcidid>https://orcid.org/0000-0002-6570-2180</orcidid><orcidid>https://orcid.org/0000-0002-7592-6567</orcidid><orcidid>https://orcid.org/0000-0002-8404-6684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2020-04, Vol.26 (7), p.1667-1677
issn 1078-0432
1557-3265
1557-3265
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7124974
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Androgen Receptor Antagonists - pharmacology
Animals
Antineoplastic Agents - pharmacology
Apoptosis
Carcinoma, Neuroendocrine - drug therapy
Carcinoma, Neuroendocrine - genetics
Carcinoma, Neuroendocrine - metabolism
Carcinoma, Neuroendocrine - pathology
Carcinoma, Small Cell - drug therapy
Carcinoma, Small Cell - genetics
Carcinoma, Small Cell - metabolism
Carcinoma, Small Cell - pathology
Cell Cycle Proteins - antagonists & inhibitors
Cell Line, Tumor
Gene Expression Regulation, Neoplastic
Humans
Male
Mice
Prostatic Neoplasms, Castration-Resistant - drug therapy
Prostatic Neoplasms, Castration-Resistant - genetics
Prostatic Neoplasms, Castration-Resistant - metabolism
Prostatic Neoplasms, Castration-Resistant - pathology
Protein-Tyrosine Kinases - antagonists & inhibitors
Proto-Oncogene Proteins c-bcl-2 - antagonists & inhibitors
Signal Transduction
Xenograft Model Antitumor Assays
title Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Therapeutic%20Vulnerabilities%20in%20Small-cell%20Neuroendocrine%20Prostate%20Cancer&rft.jtitle=Clinical%20cancer%20research&rft.au=Corella,%20Alexandra%20N&rft.date=2020-04-01&rft.volume=26&rft.issue=7&rft.spage=1667&rft.epage=1677&rft.pages=1667-1677&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-19-0775&rft_dat=%3Cproquest_pubme%3E2322752729%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322752729&rft_id=info:pmid/31806643&rfr_iscdi=true