Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms

Using proteomic and RT-qPCR approaches, we investigated how Pseudomonas aeruginosa adapts the level of expression of its various iron-uptake pathways in response to different growth conditions (planktonic growth in different media and an epithelial cells infection assay) in the presence and absence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2020-04, Vol.19 (4), p.589-607
Hauptverfasser: Perraud, Quentin, Cantero, Paola, Roche, Béatrice, Gasser, Véronique, Normant, Vincent P., Kuhn, Lauriane, Hammann, Philippe, Mislin, Gaëtan L.A., Ehret-Sabatier, Laurence, Schalk, Isabelle J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue 4
container_start_page 589
container_title Molecular & cellular proteomics
container_volume 19
creator Perraud, Quentin
Cantero, Paola
Roche, Béatrice
Gasser, Véronique
Normant, Vincent P.
Kuhn, Lauriane
Hammann, Philippe
Mislin, Gaëtan L.A.
Ehret-Sabatier, Laurence
Schalk, Isabelle J.
description Using proteomic and RT-qPCR approaches, we investigated how Pseudomonas aeruginosa adapts the level of expression of its various iron-uptake pathways in response to different growth conditions (planktonic growth in different media and an epithelial cells infection assay) in the presence and absence of four different exosiderophores. The results show a complex phenotypic plasticity in the expression of the various iron-uptake pathways indicating a high potential of adaptation of P. aeruginosa to a large variety of biotopes. [Display omitted] Highlights •P. aeruginosa grown with exosiderophores and analyzed by proteomic and RT-qPCR.•Catechol-type exosiderophores strongly induce the expression of their transporters.•Repression of the endogenous iron uptake pathways.•Complex phenotypic plasticity in the expression of the various iron-uptake pathways. Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of i
doi_str_mv 10.1074/mcp.RA119.001829
format Article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7124469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535947620350192</els_id><sourcerecordid>32024770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-787e92657e973b44338cdf8e2a4c35f4e14c41d8000b662fb95d144adbc8e7213</originalsourceid><addsrcrecordid>eNp1kc9v2yAUx9G0aunS3neauO6QFDAYe4dJUbUtlTI16o8zwvAcs9VggRMp_32duo3aSb0Agu_3y3vvg9AXSuaUSH7Rmm5-s6C0nBNCC1Z-QKdUZGJW8oJ_PJ5lPkGfU_pLCCNUik9okjHCuJTkFNXrBnzo950zeGF117vgcajxOsHWhjZ4nbCGuN04H5LG1R4vtfnn_AbfOgsxdE2IkPA6Brs1YA-C676BiP84E0OIG-1datMZOqn1Q4Lz532K7n_9vLtczlbXv68uF6uZEazoZ7KQULJcDKvMKs6zrDC2LoBpbjJRc6DccGoLQkiV56yuSmEp59pWpgDJaDZFP8bcblu1YA34PuoH1UXX6rhXQTv19sW7Rm3CTknKOM_LIeDbGND8Z1suVupwR5gQIpN0d_iMjNqh05Qi1EcDJerARw181BMfNfIZLF9f13c0vAAZBN9HAQxT2jmIKhkHfhiti2B6ZYN7P_0RIcOh2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Perraud, Quentin ; Cantero, Paola ; Roche, Béatrice ; Gasser, Véronique ; Normant, Vincent P. ; Kuhn, Lauriane ; Hammann, Philippe ; Mislin, Gaëtan L.A. ; Ehret-Sabatier, Laurence ; Schalk, Isabelle J.</creator><creatorcontrib>Perraud, Quentin ; Cantero, Paola ; Roche, Béatrice ; Gasser, Véronique ; Normant, Vincent P. ; Kuhn, Lauriane ; Hammann, Philippe ; Mislin, Gaëtan L.A. ; Ehret-Sabatier, Laurence ; Schalk, Isabelle J.</creatorcontrib><description>Using proteomic and RT-qPCR approaches, we investigated how Pseudomonas aeruginosa adapts the level of expression of its various iron-uptake pathways in response to different growth conditions (planktonic growth in different media and an epithelial cells infection assay) in the presence and absence of four different exosiderophores. The results show a complex phenotypic plasticity in the expression of the various iron-uptake pathways indicating a high potential of adaptation of P. aeruginosa to a large variety of biotopes. [Display omitted] Highlights •P. aeruginosa grown with exosiderophores and analyzed by proteomic and RT-qPCR.•Catechol-type exosiderophores strongly induce the expression of their transporters.•Repression of the endogenous iron uptake pathways.•Complex phenotypic plasticity in the expression of the various iron-uptake pathways. Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of its various iron-uptake pathways (phenotypic plasticity and switching) to match varying levels of iron and competition.</description><identifier>ISSN: 1535-9476</identifier><identifier>EISSN: 1535-9484</identifier><identifier>DOI: 10.1074/mcp.RA119.001829</identifier><identifier>PMID: 32024770</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>A549 Cells ; Adaptation, Physiological - drug effects ; Adaptation, Physiological - genetics ; Bacterial Proteins - metabolism ; Biological Transport - drug effects ; Catechols - metabolism ; Chemical Sciences ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Epithelial Cells - microbiology ; Gene Expression Regulation, Bacterial - drug effects ; Humans ; Iron - metabolism ; Iron Chelating Agents - pharmacology ; iron homeostasis ; Label-free quantification ; mass spectrometry ; microbiology ; molecular biology ; pathogens ; phenotypic plasticity ; Pseudomonas ; Pseudomonas aeruginosa - cytology ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - pathogenicity ; Pseudomonas aeruginosa - physiology ; siderophore ; Siderophores - chemistry ; Siderophores - metabolism ; TonB transporters ; Transcription, Genetic - drug effects ; Virulence Factors - metabolism</subject><ispartof>Molecular &amp; cellular proteomics, 2020-04, Vol.19 (4), p.589-607</ispartof><rights>2020 © 2020 Perraud et al.</rights><rights>2020 Perraud et al.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 Perraud et al. 2020 Perraud et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-787e92657e973b44338cdf8e2a4c35f4e14c41d8000b662fb95d144adbc8e7213</citedby><cites>FETCH-LOGICAL-c528t-787e92657e973b44338cdf8e2a4c35f4e14c41d8000b662fb95d144adbc8e7213</cites><orcidid>0000-0002-8351-1679 ; 0000-0002-2637-1024 ; 0000-0002-6883-9203 ; 0000-0002-2639-1498 ; 0000-0002-9007-7014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124469/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124469/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32024770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02555371$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Perraud, Quentin</creatorcontrib><creatorcontrib>Cantero, Paola</creatorcontrib><creatorcontrib>Roche, Béatrice</creatorcontrib><creatorcontrib>Gasser, Véronique</creatorcontrib><creatorcontrib>Normant, Vincent P.</creatorcontrib><creatorcontrib>Kuhn, Lauriane</creatorcontrib><creatorcontrib>Hammann, Philippe</creatorcontrib><creatorcontrib>Mislin, Gaëtan L.A.</creatorcontrib><creatorcontrib>Ehret-Sabatier, Laurence</creatorcontrib><creatorcontrib>Schalk, Isabelle J.</creatorcontrib><title>Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms</title><title>Molecular &amp; cellular proteomics</title><addtitle>Mol Cell Proteomics</addtitle><description>Using proteomic and RT-qPCR approaches, we investigated how Pseudomonas aeruginosa adapts the level of expression of its various iron-uptake pathways in response to different growth conditions (planktonic growth in different media and an epithelial cells infection assay) in the presence and absence of four different exosiderophores. The results show a complex phenotypic plasticity in the expression of the various iron-uptake pathways indicating a high potential of adaptation of P. aeruginosa to a large variety of biotopes. [Display omitted] Highlights •P. aeruginosa grown with exosiderophores and analyzed by proteomic and RT-qPCR.•Catechol-type exosiderophores strongly induce the expression of their transporters.•Repression of the endogenous iron uptake pathways.•Complex phenotypic plasticity in the expression of the various iron-uptake pathways. Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of its various iron-uptake pathways (phenotypic plasticity and switching) to match varying levels of iron and competition.</description><subject>A549 Cells</subject><subject>Adaptation, Physiological - drug effects</subject><subject>Adaptation, Physiological - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Transport - drug effects</subject><subject>Catechols - metabolism</subject><subject>Chemical Sciences</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - microbiology</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Humans</subject><subject>Iron - metabolism</subject><subject>Iron Chelating Agents - pharmacology</subject><subject>iron homeostasis</subject><subject>Label-free quantification</subject><subject>mass spectrometry</subject><subject>microbiology</subject><subject>molecular biology</subject><subject>pathogens</subject><subject>phenotypic plasticity</subject><subject>Pseudomonas</subject><subject>Pseudomonas aeruginosa - cytology</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - pathogenicity</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>siderophore</subject><subject>Siderophores - chemistry</subject><subject>Siderophores - metabolism</subject><subject>TonB transporters</subject><subject>Transcription, Genetic - drug effects</subject><subject>Virulence Factors - metabolism</subject><issn>1535-9476</issn><issn>1535-9484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9v2yAUx9G0aunS3neauO6QFDAYe4dJUbUtlTI16o8zwvAcs9VggRMp_32duo3aSb0Agu_3y3vvg9AXSuaUSH7Rmm5-s6C0nBNCC1Z-QKdUZGJW8oJ_PJ5lPkGfU_pLCCNUik9okjHCuJTkFNXrBnzo950zeGF117vgcajxOsHWhjZ4nbCGuN04H5LG1R4vtfnn_AbfOgsxdE2IkPA6Brs1YA-C676BiP84E0OIG-1datMZOqn1Q4Lz532K7n_9vLtczlbXv68uF6uZEazoZ7KQULJcDKvMKs6zrDC2LoBpbjJRc6DccGoLQkiV56yuSmEp59pWpgDJaDZFP8bcblu1YA34PuoH1UXX6rhXQTv19sW7Rm3CTknKOM_LIeDbGND8Z1suVupwR5gQIpN0d_iMjNqh05Qi1EcDJerARw181BMfNfIZLF9f13c0vAAZBN9HAQxT2jmIKhkHfhiti2B6ZYN7P_0RIcOh2A</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Perraud, Quentin</creator><creator>Cantero, Paola</creator><creator>Roche, Béatrice</creator><creator>Gasser, Véronique</creator><creator>Normant, Vincent P.</creator><creator>Kuhn, Lauriane</creator><creator>Hammann, Philippe</creator><creator>Mislin, Gaëtan L.A.</creator><creator>Ehret-Sabatier, Laurence</creator><creator>Schalk, Isabelle J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><general>The American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8351-1679</orcidid><orcidid>https://orcid.org/0000-0002-2637-1024</orcidid><orcidid>https://orcid.org/0000-0002-6883-9203</orcidid><orcidid>https://orcid.org/0000-0002-2639-1498</orcidid><orcidid>https://orcid.org/0000-0002-9007-7014</orcidid></search><sort><creationdate>20200401</creationdate><title>Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms</title><author>Perraud, Quentin ; Cantero, Paola ; Roche, Béatrice ; Gasser, Véronique ; Normant, Vincent P. ; Kuhn, Lauriane ; Hammann, Philippe ; Mislin, Gaëtan L.A. ; Ehret-Sabatier, Laurence ; Schalk, Isabelle J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-787e92657e973b44338cdf8e2a4c35f4e14c41d8000b662fb95d144adbc8e7213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Adaptation, Physiological - drug effects</topic><topic>Adaptation, Physiological - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Transport - drug effects</topic><topic>Catechols - metabolism</topic><topic>Chemical Sciences</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - microbiology</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Humans</topic><topic>Iron - metabolism</topic><topic>Iron Chelating Agents - pharmacology</topic><topic>iron homeostasis</topic><topic>Label-free quantification</topic><topic>mass spectrometry</topic><topic>microbiology</topic><topic>molecular biology</topic><topic>pathogens</topic><topic>phenotypic plasticity</topic><topic>Pseudomonas</topic><topic>Pseudomonas aeruginosa - cytology</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - pathogenicity</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>siderophore</topic><topic>Siderophores - chemistry</topic><topic>Siderophores - metabolism</topic><topic>TonB transporters</topic><topic>Transcription, Genetic - drug effects</topic><topic>Virulence Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perraud, Quentin</creatorcontrib><creatorcontrib>Cantero, Paola</creatorcontrib><creatorcontrib>Roche, Béatrice</creatorcontrib><creatorcontrib>Gasser, Véronique</creatorcontrib><creatorcontrib>Normant, Vincent P.</creatorcontrib><creatorcontrib>Kuhn, Lauriane</creatorcontrib><creatorcontrib>Hammann, Philippe</creatorcontrib><creatorcontrib>Mislin, Gaëtan L.A.</creatorcontrib><creatorcontrib>Ehret-Sabatier, Laurence</creatorcontrib><creatorcontrib>Schalk, Isabelle J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular &amp; cellular proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perraud, Quentin</au><au>Cantero, Paola</au><au>Roche, Béatrice</au><au>Gasser, Véronique</au><au>Normant, Vincent P.</au><au>Kuhn, Lauriane</au><au>Hammann, Philippe</au><au>Mislin, Gaëtan L.A.</au><au>Ehret-Sabatier, Laurence</au><au>Schalk, Isabelle J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms</atitle><jtitle>Molecular &amp; cellular proteomics</jtitle><addtitle>Mol Cell Proteomics</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>19</volume><issue>4</issue><spage>589</spage><epage>607</epage><pages>589-607</pages><issn>1535-9476</issn><eissn>1535-9484</eissn><abstract>Using proteomic and RT-qPCR approaches, we investigated how Pseudomonas aeruginosa adapts the level of expression of its various iron-uptake pathways in response to different growth conditions (planktonic growth in different media and an epithelial cells infection assay) in the presence and absence of four different exosiderophores. The results show a complex phenotypic plasticity in the expression of the various iron-uptake pathways indicating a high potential of adaptation of P. aeruginosa to a large variety of biotopes. [Display omitted] Highlights •P. aeruginosa grown with exosiderophores and analyzed by proteomic and RT-qPCR.•Catechol-type exosiderophores strongly induce the expression of their transporters.•Repression of the endogenous iron uptake pathways.•Complex phenotypic plasticity in the expression of the various iron-uptake pathways. Bacteria secrete siderophores to access iron, a key nutrient poorly bioavailable and the source of strong competition between microorganisms in most biotopes. Many bacteria also use siderophores produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa, an opportunistic pathogen, produces two siderophores, pyoverdine and pyochelin, and is also able to use a panel of exosiderophores. We first investigated expression of the various iron-uptake pathways of P. aeruginosa in three different growth media using proteomic and RT-qPCR approaches and observed three different phenotypic patterns, indicating complex phenotypic plasticity in the expression of the various iron-uptake pathways. We then investigated the phenotypic plasticity of iron-uptake pathway expression in the presence of various exosiderophores (present individually or as a mixture) under planktonic growth conditions, as well as in an epithelial cell infection assay. In all growth conditions tested, catechol-type exosiderophores were clearly more efficient in inducing the expression of their corresponding transporters than the others, showing that bacteria opt for the use of catechol siderophores to access iron when they are present in the environment. In parallel, expression of the proteins of the pyochelin pathway was significantly repressed under most conditions tested, as well as that of proteins of the pyoverdine pathway, but to a lesser extent. There was no effect on the expression of the heme and ferrous uptake pathways. Overall, these data provide precise insights on how P. aeruginosa adjusts the expression of its various iron-uptake pathways (phenotypic plasticity and switching) to match varying levels of iron and competition.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32024770</pmid><doi>10.1074/mcp.RA119.001829</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8351-1679</orcidid><orcidid>https://orcid.org/0000-0002-2637-1024</orcidid><orcidid>https://orcid.org/0000-0002-6883-9203</orcidid><orcidid>https://orcid.org/0000-0002-2639-1498</orcidid><orcidid>https://orcid.org/0000-0002-9007-7014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-9476
ispartof Molecular & cellular proteomics, 2020-04, Vol.19 (4), p.589-607
issn 1535-9476
1535-9484
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7124469
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects A549 Cells
Adaptation, Physiological - drug effects
Adaptation, Physiological - genetics
Bacterial Proteins - metabolism
Biological Transport - drug effects
Catechols - metabolism
Chemical Sciences
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Epithelial Cells - microbiology
Gene Expression Regulation, Bacterial - drug effects
Humans
Iron - metabolism
Iron Chelating Agents - pharmacology
iron homeostasis
Label-free quantification
mass spectrometry
microbiology
molecular biology
pathogens
phenotypic plasticity
Pseudomonas
Pseudomonas aeruginosa - cytology
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - pathogenicity
Pseudomonas aeruginosa - physiology
siderophore
Siderophores - chemistry
Siderophores - metabolism
TonB transporters
Transcription, Genetic - drug effects
Virulence Factors - metabolism
title Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenotypic%20Adaption%20of%20Pseudomonas%20aeruginosa%20by%20Hacking%20Siderophores%20Produced%20by%20Other%20Microorganisms&rft.jtitle=Molecular%20&%20cellular%20proteomics&rft.au=Perraud,%20Quentin&rft.date=2020-04-01&rft.volume=19&rft.issue=4&rft.spage=589&rft.epage=607&rft.pages=589-607&rft.issn=1535-9476&rft.eissn=1535-9484&rft_id=info:doi/10.1074/mcp.RA119.001829&rft_dat=%3Cpubmed_hal_p%3E32024770%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32024770&rft_els_id=S1535947620350192&rfr_iscdi=true