Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust

The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-04, Vol.3 (1), p.136-136, Article 136
Hauptverfasser: Suzuki, Yohey, Yamashita, Seiya, Kouduka, Mariko, Ao, Yutaro, Mukai, Hiroki, Mitsunobu, Satoshi, Kagi, Hiroyuki, D’Hondt, Steven, Inagaki, Fumio, Morono, Yuki, Hoshino, Tatsuhiko, Tomioka, Naotaka, Ito, Motoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 136
container_title Communications biology
container_volume 3
creator Suzuki, Yohey
Yamashita, Seiya
Kouduka, Mariko
Ao, Yutaro
Mukai, Hiroki
Mitsunobu, Satoshi
Kagi, Hiroyuki
D’Hondt, Steven
Inagaki, Fumio
Morono, Yuki
Hoshino, Tatsuhiko
Tomioka, Naotaka
Ito, Motoo
description The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 10 10 cells/cm 3 . Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water. Yohey Suzuki, Seiya Yamashita et al. discover the presence of bacterial cells in the iron-rich smectite on aged subseafloor basaltic rock using nanoscale solid characterizations. Analysis of their lipid profiles and DNA sequences reveals the dominance of heterotrophic bacteria, suggesting the presence of organic matter resources in the subsea basalt.
doi_str_mv 10.1038/s42003-020-0860-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7118141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386283286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-efc1bb785cdbdd6cfefb6daf863514fd1b72e06ecb37b028175ffa461c25c45c3</originalsourceid><addsrcrecordid>eNp1kc9qFTEUxoMotlz7AG4k4MZNapIzk5nZCFL_QsGNrkOSOWlTcifXJCN013fwDX0Sc721VsFVDpzf-fKd8xHyVPBTwWF8WTrJOTAuOeOj4kw8IMcSpomB6uTDe_UROSnlinMupmlS0D0mRyBlm1bymJg3iDu6DS4nG0yku5xi8JhNDWmhptJ6idSaYmKlYamYvXHYKgpw2v-4-S5416ZjbDS7RpNZijNNDs0SHHV5LfUJeeRNLHhy-27Il3dvP599YOef3n88e33OXA-qMvROWDuMvZvtPCvn0Vs1Gz8q6EXnZ2EHiVyhszBYLkcx9N6bTgkne9f1Djbk1UF3t9otzg6Xmk3Uuxy2Jl_rZIL-u7OES32RvulBiFF0ogm8uBXI6euKpeptKA5jNAumtWgJo5IjyOZoQ57_g16lNS9tvV8UKDkANEocqHbcUjL6OzOC632G-pChbhnqfYZ6b-LZ_S3uJn4n1gB5AEprLReY_3z9f9WfwDuong</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386362733</pqid></control><display><type>article</type><title>Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Suzuki, Yohey ; Yamashita, Seiya ; Kouduka, Mariko ; Ao, Yutaro ; Mukai, Hiroki ; Mitsunobu, Satoshi ; Kagi, Hiroyuki ; D’Hondt, Steven ; Inagaki, Fumio ; Morono, Yuki ; Hoshino, Tatsuhiko ; Tomioka, Naotaka ; Ito, Motoo</creator><creatorcontrib>Suzuki, Yohey ; Yamashita, Seiya ; Kouduka, Mariko ; Ao, Yutaro ; Mukai, Hiroki ; Mitsunobu, Satoshi ; Kagi, Hiroyuki ; D’Hondt, Steven ; Inagaki, Fumio ; Morono, Yuki ; Hoshino, Tatsuhiko ; Tomioka, Naotaka ; Ito, Motoo</creatorcontrib><description>The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 10 10 cells/cm 3 . Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water. Yohey Suzuki, Seiya Yamashita et al. discover the presence of bacterial cells in the iron-rich smectite on aged subseafloor basaltic rock using nanoscale solid characterizations. Analysis of their lipid profiles and DNA sequences reveals the dominance of heterotrophic bacteria, suggesting the presence of organic matter resources in the subsea basalt.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0860-1</identifier><identifier>PMID: 32242062</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 14/34 ; 45 ; 45/22 ; 45/23 ; 631/158/47/4113 ; 631/1647/245/2225 ; 631/326/171/1818 ; Biology ; Biomedical and Life Sciences ; Carbon ; Carbon sources ; Deoxyribonucleic acid ; DNA ; Dominance ; Heterotrophic bacteria ; Lava ; Life Sciences ; Lipids ; Nucleotide sequence ; Organic carbon ; Organic matter</subject><ispartof>Communications biology, 2020-04, Vol.3 (1), p.136-136, Article 136</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-efc1bb785cdbdd6cfefb6daf863514fd1b72e06ecb37b028175ffa461c25c45c3</citedby><cites>FETCH-LOGICAL-c536t-efc1bb785cdbdd6cfefb6daf863514fd1b72e06ecb37b028175ffa461c25c45c3</cites><orcidid>0000-0002-8713-9368 ; 0000-0001-5686-0243 ; 0000-0001-8928-4254 ; 0000-0003-2887-6525 ; 0000-0001-5725-9513 ; 0000-0001-9915-1148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118141/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118141/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32242062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Yohey</creatorcontrib><creatorcontrib>Yamashita, Seiya</creatorcontrib><creatorcontrib>Kouduka, Mariko</creatorcontrib><creatorcontrib>Ao, Yutaro</creatorcontrib><creatorcontrib>Mukai, Hiroki</creatorcontrib><creatorcontrib>Mitsunobu, Satoshi</creatorcontrib><creatorcontrib>Kagi, Hiroyuki</creatorcontrib><creatorcontrib>D’Hondt, Steven</creatorcontrib><creatorcontrib>Inagaki, Fumio</creatorcontrib><creatorcontrib>Morono, Yuki</creatorcontrib><creatorcontrib>Hoshino, Tatsuhiko</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Ito, Motoo</creatorcontrib><title>Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 10 10 cells/cm 3 . Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water. Yohey Suzuki, Seiya Yamashita et al. discover the presence of bacterial cells in the iron-rich smectite on aged subseafloor basaltic rock using nanoscale solid characterizations. Analysis of their lipid profiles and DNA sequences reveals the dominance of heterotrophic bacteria, suggesting the presence of organic matter resources in the subsea basalt.</description><subject>13</subject><subject>14</subject><subject>14/34</subject><subject>45</subject><subject>45/22</subject><subject>45/23</subject><subject>631/158/47/4113</subject><subject>631/1647/245/2225</subject><subject>631/326/171/1818</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dominance</subject><subject>Heterotrophic bacteria</subject><subject>Lava</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Nucleotide sequence</subject><subject>Organic carbon</subject><subject>Organic matter</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9qFTEUxoMotlz7AG4k4MZNapIzk5nZCFL_QsGNrkOSOWlTcifXJCN013fwDX0Sc721VsFVDpzf-fKd8xHyVPBTwWF8WTrJOTAuOeOj4kw8IMcSpomB6uTDe_UROSnlinMupmlS0D0mRyBlm1bymJg3iDu6DS4nG0yku5xi8JhNDWmhptJ6idSaYmKlYamYvXHYKgpw2v-4-S5416ZjbDS7RpNZijNNDs0SHHV5LfUJeeRNLHhy-27Il3dvP599YOef3n88e33OXA-qMvROWDuMvZvtPCvn0Vs1Gz8q6EXnZ2EHiVyhszBYLkcx9N6bTgkne9f1Djbk1UF3t9otzg6Xmk3Uuxy2Jl_rZIL-u7OES32RvulBiFF0ogm8uBXI6euKpeptKA5jNAumtWgJo5IjyOZoQ57_g16lNS9tvV8UKDkANEocqHbcUjL6OzOC632G-pChbhnqfYZ6b-LZ_S3uJn4n1gB5AEprLReY_3z9f9WfwDuong</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Suzuki, Yohey</creator><creator>Yamashita, Seiya</creator><creator>Kouduka, Mariko</creator><creator>Ao, Yutaro</creator><creator>Mukai, Hiroki</creator><creator>Mitsunobu, Satoshi</creator><creator>Kagi, Hiroyuki</creator><creator>D’Hondt, Steven</creator><creator>Inagaki, Fumio</creator><creator>Morono, Yuki</creator><creator>Hoshino, Tatsuhiko</creator><creator>Tomioka, Naotaka</creator><creator>Ito, Motoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8713-9368</orcidid><orcidid>https://orcid.org/0000-0001-5686-0243</orcidid><orcidid>https://orcid.org/0000-0001-8928-4254</orcidid><orcidid>https://orcid.org/0000-0003-2887-6525</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0001-9915-1148</orcidid></search><sort><creationdate>20200402</creationdate><title>Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust</title><author>Suzuki, Yohey ; Yamashita, Seiya ; Kouduka, Mariko ; Ao, Yutaro ; Mukai, Hiroki ; Mitsunobu, Satoshi ; Kagi, Hiroyuki ; D’Hondt, Steven ; Inagaki, Fumio ; Morono, Yuki ; Hoshino, Tatsuhiko ; Tomioka, Naotaka ; Ito, Motoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-efc1bb785cdbdd6cfefb6daf863514fd1b72e06ecb37b028175ffa461c25c45c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>14</topic><topic>14/34</topic><topic>45</topic><topic>45/22</topic><topic>45/23</topic><topic>631/158/47/4113</topic><topic>631/1647/245/2225</topic><topic>631/326/171/1818</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dominance</topic><topic>Heterotrophic bacteria</topic><topic>Lava</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Nucleotide sequence</topic><topic>Organic carbon</topic><topic>Organic matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Yohey</creatorcontrib><creatorcontrib>Yamashita, Seiya</creatorcontrib><creatorcontrib>Kouduka, Mariko</creatorcontrib><creatorcontrib>Ao, Yutaro</creatorcontrib><creatorcontrib>Mukai, Hiroki</creatorcontrib><creatorcontrib>Mitsunobu, Satoshi</creatorcontrib><creatorcontrib>Kagi, Hiroyuki</creatorcontrib><creatorcontrib>D’Hondt, Steven</creatorcontrib><creatorcontrib>Inagaki, Fumio</creatorcontrib><creatorcontrib>Morono, Yuki</creatorcontrib><creatorcontrib>Hoshino, Tatsuhiko</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Ito, Motoo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Yohey</au><au>Yamashita, Seiya</au><au>Kouduka, Mariko</au><au>Ao, Yutaro</au><au>Mukai, Hiroki</au><au>Mitsunobu, Satoshi</au><au>Kagi, Hiroyuki</au><au>D’Hondt, Steven</au><au>Inagaki, Fumio</au><au>Morono, Yuki</au><au>Hoshino, Tatsuhiko</au><au>Tomioka, Naotaka</au><au>Ito, Motoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-04-02</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>136</spage><epage>136</epage><pages>136-136</pages><artnum>136</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 10 10 cells/cm 3 . Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water. Yohey Suzuki, Seiya Yamashita et al. discover the presence of bacterial cells in the iron-rich smectite on aged subseafloor basaltic rock using nanoscale solid characterizations. Analysis of their lipid profiles and DNA sequences reveals the dominance of heterotrophic bacteria, suggesting the presence of organic matter resources in the subsea basalt.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32242062</pmid><doi>10.1038/s42003-020-0860-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8713-9368</orcidid><orcidid>https://orcid.org/0000-0001-5686-0243</orcidid><orcidid>https://orcid.org/0000-0001-8928-4254</orcidid><orcidid>https://orcid.org/0000-0003-2887-6525</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0001-9915-1148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2020-04, Vol.3 (1), p.136-136, Article 136
issn 2399-3642
2399-3642
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7118141
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 13
14
14/34
45
45/22
45/23
631/158/47/4113
631/1647/245/2225
631/326/171/1818
Biology
Biomedical and Life Sciences
Carbon
Carbon sources
Deoxyribonucleic acid
DNA
Dominance
Heterotrophic bacteria
Lava
Life Sciences
Lipids
Nucleotide sequence
Organic carbon
Organic matter
title Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20microbial%20proliferation%20at%20the%20basalt%20interface%20in%2033.5%E2%80%93104%20million-year-old%20oceanic%20crust&rft.jtitle=Communications%20biology&rft.au=Suzuki,%20Yohey&rft.date=2020-04-02&rft.volume=3&rft.issue=1&rft.spage=136&rft.epage=136&rft.pages=136-136&rft.artnum=136&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0860-1&rft_dat=%3Cproquest_pubme%3E2386283286%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386362733&rft_id=info:pmid/32242062&rfr_iscdi=true