Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust
The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we s...
Gespeichert in:
Veröffentlicht in: | Communications biology 2020-04, Vol.3 (1), p.136-136, Article 136 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 1 |
container_start_page | 136 |
container_title | Communications biology |
container_volume | 3 |
creator | Suzuki, Yohey Yamashita, Seiya Kouduka, Mariko Ao, Yutaro Mukai, Hiroki Mitsunobu, Satoshi Kagi, Hiroyuki D’Hondt, Steven Inagaki, Fumio Morono, Yuki Hoshino, Tatsuhiko Tomioka, Naotaka Ito, Motoo |
description | The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 10
10
cells/cm
3
. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water.
Yohey Suzuki, Seiya Yamashita et al. discover the presence of bacterial cells in the iron-rich smectite on aged subseafloor basaltic rock using nanoscale solid characterizations. Analysis of their lipid profiles and DNA sequences reveals the dominance of heterotrophic bacteria, suggesting the presence of organic matter resources in the subsea basalt. |
doi_str_mv | 10.1038/s42003-020-0860-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7118141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386283286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-efc1bb785cdbdd6cfefb6daf863514fd1b72e06ecb37b028175ffa461c25c45c3</originalsourceid><addsrcrecordid>eNp1kc9qFTEUxoMotlz7AG4k4MZNapIzk5nZCFL_QsGNrkOSOWlTcifXJCN013fwDX0Sc721VsFVDpzf-fKd8xHyVPBTwWF8WTrJOTAuOeOj4kw8IMcSpomB6uTDe_UROSnlinMupmlS0D0mRyBlm1bymJg3iDu6DS4nG0yku5xi8JhNDWmhptJ6idSaYmKlYamYvXHYKgpw2v-4-S5416ZjbDS7RpNZijNNDs0SHHV5LfUJeeRNLHhy-27Il3dvP599YOef3n88e33OXA-qMvROWDuMvZvtPCvn0Vs1Gz8q6EXnZ2EHiVyhszBYLkcx9N6bTgkne9f1Djbk1UF3t9otzg6Xmk3Uuxy2Jl_rZIL-u7OES32RvulBiFF0ogm8uBXI6euKpeptKA5jNAumtWgJo5IjyOZoQ57_g16lNS9tvV8UKDkANEocqHbcUjL6OzOC632G-pChbhnqfYZ6b-LZ_S3uJn4n1gB5AEprLReY_3z9f9WfwDuong</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386362733</pqid></control><display><type>article</type><title>Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Suzuki, Yohey ; Yamashita, Seiya ; Kouduka, Mariko ; Ao, Yutaro ; Mukai, Hiroki ; Mitsunobu, Satoshi ; Kagi, Hiroyuki ; D’Hondt, Steven ; Inagaki, Fumio ; Morono, Yuki ; Hoshino, Tatsuhiko ; Tomioka, Naotaka ; Ito, Motoo</creator><creatorcontrib>Suzuki, Yohey ; Yamashita, Seiya ; Kouduka, Mariko ; Ao, Yutaro ; Mukai, Hiroki ; Mitsunobu, Satoshi ; Kagi, Hiroyuki ; D’Hondt, Steven ; Inagaki, Fumio ; Morono, Yuki ; Hoshino, Tatsuhiko ; Tomioka, Naotaka ; Ito, Motoo</creatorcontrib><description>The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 10
10
cells/cm
3
. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water.
Yohey Suzuki, Seiya Yamashita et al. discover the presence of bacterial cells in the iron-rich smectite on aged subseafloor basaltic rock using nanoscale solid characterizations. Analysis of their lipid profiles and DNA sequences reveals the dominance of heterotrophic bacteria, suggesting the presence of organic matter resources in the subsea basalt.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-020-0860-1</identifier><identifier>PMID: 32242062</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 14/34 ; 45 ; 45/22 ; 45/23 ; 631/158/47/4113 ; 631/1647/245/2225 ; 631/326/171/1818 ; Biology ; Biomedical and Life Sciences ; Carbon ; Carbon sources ; Deoxyribonucleic acid ; DNA ; Dominance ; Heterotrophic bacteria ; Lava ; Life Sciences ; Lipids ; Nucleotide sequence ; Organic carbon ; Organic matter</subject><ispartof>Communications biology, 2020-04, Vol.3 (1), p.136-136, Article 136</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-efc1bb785cdbdd6cfefb6daf863514fd1b72e06ecb37b028175ffa461c25c45c3</citedby><cites>FETCH-LOGICAL-c536t-efc1bb785cdbdd6cfefb6daf863514fd1b72e06ecb37b028175ffa461c25c45c3</cites><orcidid>0000-0002-8713-9368 ; 0000-0001-5686-0243 ; 0000-0001-8928-4254 ; 0000-0003-2887-6525 ; 0000-0001-5725-9513 ; 0000-0001-9915-1148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118141/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118141/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32242062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Yohey</creatorcontrib><creatorcontrib>Yamashita, Seiya</creatorcontrib><creatorcontrib>Kouduka, Mariko</creatorcontrib><creatorcontrib>Ao, Yutaro</creatorcontrib><creatorcontrib>Mukai, Hiroki</creatorcontrib><creatorcontrib>Mitsunobu, Satoshi</creatorcontrib><creatorcontrib>Kagi, Hiroyuki</creatorcontrib><creatorcontrib>D’Hondt, Steven</creatorcontrib><creatorcontrib>Inagaki, Fumio</creatorcontrib><creatorcontrib>Morono, Yuki</creatorcontrib><creatorcontrib>Hoshino, Tatsuhiko</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Ito, Motoo</creatorcontrib><title>Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 10
10
cells/cm
3
. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water.
Yohey Suzuki, Seiya Yamashita et al. discover the presence of bacterial cells in the iron-rich smectite on aged subseafloor basaltic rock using nanoscale solid characterizations. Analysis of their lipid profiles and DNA sequences reveals the dominance of heterotrophic bacteria, suggesting the presence of organic matter resources in the subsea basalt.</description><subject>13</subject><subject>14</subject><subject>14/34</subject><subject>45</subject><subject>45/22</subject><subject>45/23</subject><subject>631/158/47/4113</subject><subject>631/1647/245/2225</subject><subject>631/326/171/1818</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dominance</subject><subject>Heterotrophic bacteria</subject><subject>Lava</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Nucleotide sequence</subject><subject>Organic carbon</subject><subject>Organic matter</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9qFTEUxoMotlz7AG4k4MZNapIzk5nZCFL_QsGNrkOSOWlTcifXJCN013fwDX0Sc721VsFVDpzf-fKd8xHyVPBTwWF8WTrJOTAuOeOj4kw8IMcSpomB6uTDe_UROSnlinMupmlS0D0mRyBlm1bymJg3iDu6DS4nG0yku5xi8JhNDWmhptJ6idSaYmKlYamYvXHYKgpw2v-4-S5416ZjbDS7RpNZijNNDs0SHHV5LfUJeeRNLHhy-27Il3dvP599YOef3n88e33OXA-qMvROWDuMvZvtPCvn0Vs1Gz8q6EXnZ2EHiVyhszBYLkcx9N6bTgkne9f1Djbk1UF3t9otzg6Xmk3Uuxy2Jl_rZIL-u7OES32RvulBiFF0ogm8uBXI6euKpeptKA5jNAumtWgJo5IjyOZoQ57_g16lNS9tvV8UKDkANEocqHbcUjL6OzOC632G-pChbhnqfYZ6b-LZ_S3uJn4n1gB5AEprLReY_3z9f9WfwDuong</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Suzuki, Yohey</creator><creator>Yamashita, Seiya</creator><creator>Kouduka, Mariko</creator><creator>Ao, Yutaro</creator><creator>Mukai, Hiroki</creator><creator>Mitsunobu, Satoshi</creator><creator>Kagi, Hiroyuki</creator><creator>D’Hondt, Steven</creator><creator>Inagaki, Fumio</creator><creator>Morono, Yuki</creator><creator>Hoshino, Tatsuhiko</creator><creator>Tomioka, Naotaka</creator><creator>Ito, Motoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8713-9368</orcidid><orcidid>https://orcid.org/0000-0001-5686-0243</orcidid><orcidid>https://orcid.org/0000-0001-8928-4254</orcidid><orcidid>https://orcid.org/0000-0003-2887-6525</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0001-9915-1148</orcidid></search><sort><creationdate>20200402</creationdate><title>Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust</title><author>Suzuki, Yohey ; Yamashita, Seiya ; Kouduka, Mariko ; Ao, Yutaro ; Mukai, Hiroki ; Mitsunobu, Satoshi ; Kagi, Hiroyuki ; D’Hondt, Steven ; Inagaki, Fumio ; Morono, Yuki ; Hoshino, Tatsuhiko ; Tomioka, Naotaka ; Ito, Motoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-efc1bb785cdbdd6cfefb6daf863514fd1b72e06ecb37b028175ffa461c25c45c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>14</topic><topic>14/34</topic><topic>45</topic><topic>45/22</topic><topic>45/23</topic><topic>631/158/47/4113</topic><topic>631/1647/245/2225</topic><topic>631/326/171/1818</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dominance</topic><topic>Heterotrophic bacteria</topic><topic>Lava</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Nucleotide sequence</topic><topic>Organic carbon</topic><topic>Organic matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Yohey</creatorcontrib><creatorcontrib>Yamashita, Seiya</creatorcontrib><creatorcontrib>Kouduka, Mariko</creatorcontrib><creatorcontrib>Ao, Yutaro</creatorcontrib><creatorcontrib>Mukai, Hiroki</creatorcontrib><creatorcontrib>Mitsunobu, Satoshi</creatorcontrib><creatorcontrib>Kagi, Hiroyuki</creatorcontrib><creatorcontrib>D’Hondt, Steven</creatorcontrib><creatorcontrib>Inagaki, Fumio</creatorcontrib><creatorcontrib>Morono, Yuki</creatorcontrib><creatorcontrib>Hoshino, Tatsuhiko</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Ito, Motoo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Yohey</au><au>Yamashita, Seiya</au><au>Kouduka, Mariko</au><au>Ao, Yutaro</au><au>Mukai, Hiroki</au><au>Mitsunobu, Satoshi</au><au>Kagi, Hiroyuki</au><au>D’Hondt, Steven</au><au>Inagaki, Fumio</au><au>Morono, Yuki</au><au>Hoshino, Tatsuhiko</au><au>Tomioka, Naotaka</au><au>Ito, Motoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2020-04-02</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>136</spage><epage>136</epage><pages>136-136</pages><artnum>136</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 10
10
cells/cm
3
. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water.
Yohey Suzuki, Seiya Yamashita et al. discover the presence of bacterial cells in the iron-rich smectite on aged subseafloor basaltic rock using nanoscale solid characterizations. Analysis of their lipid profiles and DNA sequences reveals the dominance of heterotrophic bacteria, suggesting the presence of organic matter resources in the subsea basalt.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32242062</pmid><doi>10.1038/s42003-020-0860-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8713-9368</orcidid><orcidid>https://orcid.org/0000-0001-5686-0243</orcidid><orcidid>https://orcid.org/0000-0001-8928-4254</orcidid><orcidid>https://orcid.org/0000-0003-2887-6525</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0001-9915-1148</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2020-04, Vol.3 (1), p.136-136, Article 136 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7118141 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 13 14 14/34 45 45/22 45/23 631/158/47/4113 631/1647/245/2225 631/326/171/1818 Biology Biomedical and Life Sciences Carbon Carbon sources Deoxyribonucleic acid DNA Dominance Heterotrophic bacteria Lava Life Sciences Lipids Nucleotide sequence Organic carbon Organic matter |
title | Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20microbial%20proliferation%20at%20the%20basalt%20interface%20in%2033.5%E2%80%93104%20million-year-old%20oceanic%20crust&rft.jtitle=Communications%20biology&rft.au=Suzuki,%20Yohey&rft.date=2020-04-02&rft.volume=3&rft.issue=1&rft.spage=136&rft.epage=136&rft.pages=136-136&rft.artnum=136&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-020-0860-1&rft_dat=%3Cproquest_pubme%3E2386283286%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386362733&rft_id=info:pmid/32242062&rfr_iscdi=true |