Optical Fourier surfaces
Gratings 1 and holograms 2 use patterned surfaces to tailor optical signals by diffraction. Despite their long history, variants with remarkable functionalities continue to be developed 3 , 4 . Further advances could exploit Fourier optics 5 , which specifies the surface pattern that generates a des...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-06, Vol.582 (7813), p.506-510 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 7813 |
container_start_page | 506 |
container_title | Nature (London) |
container_volume | 582 |
creator | Lassaline, Nolan Brechbühler, Raphael Vonk, Sander J. W. Ridderbeek, Korneel Spieser, Martin Bisig, Samuel le Feber, Boris Rabouw, Freddy T. Norris, David J. |
description | Gratings
1
and holograms
2
use patterned surfaces to tailor optical signals by diffraction. Despite their long history, variants with remarkable functionalities continue to be developed
3
,
4
. Further advances could exploit Fourier optics
5
, which specifies the surface pattern that generates a desired diffracted output through its Fourier transform. To shape the optical wavefront, the ideal surface profile should contain a precise sum of sinusoidal waves, each with a well defined amplitude, spatial frequency and phase. However, because fabrication techniques typically yield profiles with at most a few depth levels, complex ‘wavy’ surfaces cannot be obtained, limiting the straightforward mathematical design and implementation of sophisticated diffractive optics. Here we present a simple yet powerful approach to eliminate this design–fabrication mismatch by demonstrating optical surfaces that contain an arbitrary number of specified sinusoids. We combine thermal scanning-probe lithography
6
–
8
and templating
9
to create periodic and aperiodic surface patterns with continuous depth control and sub-wavelength spatial resolution. Multicomponent linear gratings allow precise manipulation of electromagnetic signals through Fourier-spectrum engineering
10
. Consequently, we overcome a previous limitation in photonics by creating an ultrathin grating that simultaneously couples red, green and blue light at the same angle of incidence. More broadly, we analytically design and accurately replicate intricate two-dimensional moiré patterns
11
,
12
, quasicrystals
13
,
14
and holograms
15
,
16
, demonstrating a variety of previously unattainable diffractive surfaces. This approach may find application in optical devices (biosensors
17
, lasers
18
,
19
, metasurfaces
4
and modulators
20
) and emerging areas in photonics (topological structures
21
, transformation optics
22
and valleytronics
23
).
Combining thermal scanning-probe lithography with templating enables the production of high-quality gratings that manipulate light through Fourier-spectrum engineering in ways that are not achievable with conventional gratings. |
doi_str_mv | 10.1038/s41586-020-2390-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7116695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627621643</galeid><sourcerecordid>A627621643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629t-455464aa764e5499e76ed5808e6768c2c3989f1204cdbc87fd18674508ef9d823</originalsourceid><addsrcrecordid>eNp10s9LHDEUB_AgFl2t9_YiopeWEptk8vNSWJbaCqLQKj2GmHkzjczOrMlM2f73zbJWHVmZw8Dk876Zx3sIvafklJJCf06cCi0xYQSzwhC83EITypXEXGq1jSaEMI2JLuQu2kvpjhAiqOI7aLdgQtNC8wl6d7Xog3fN0Vk3xADxKA2xch7SW_Smck2Cg4f3Pro5-3o9-44vrr6dz6YX2EtmesyF4JI7pyQHwY0BJaEUmmiQSmrPfGG0qSgj3Je3XquqpFoqLjKoTKlZsY--rHMXw-0cSg9tH11jFzHMXfxrOxfs-KQNv23d_bGKUimNyAEfHgJidz9A6u08JA9N41rohmQZpyq3qhnP9OQFvctdt7m9rBg1hmhNnlTtGrChrbp8r1-F2qlkSjIqeZEV3qBqaCH_ZNdCFfLnkT_e4P0i3Nvn6HQDyk8J8-A3pn4cFWTTw7Kv3ZCSPf_5Y2w_vW6n179ml2NN19rHLqUI1eNIKLGr7bPr7bN5--xq--wy1xw-n-Vjxf91y4CtQcpHbQ3xaQCvp_4DukzeBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421990880</pqid></control><display><type>article</type><title>Optical Fourier surfaces</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Lassaline, Nolan ; Brechbühler, Raphael ; Vonk, Sander J. W. ; Ridderbeek, Korneel ; Spieser, Martin ; Bisig, Samuel ; le Feber, Boris ; Rabouw, Freddy T. ; Norris, David J.</creator><creatorcontrib>Lassaline, Nolan ; Brechbühler, Raphael ; Vonk, Sander J. W. ; Ridderbeek, Korneel ; Spieser, Martin ; Bisig, Samuel ; le Feber, Boris ; Rabouw, Freddy T. ; Norris, David J.</creatorcontrib><description>Gratings
1
and holograms
2
use patterned surfaces to tailor optical signals by diffraction. Despite their long history, variants with remarkable functionalities continue to be developed
3
,
4
. Further advances could exploit Fourier optics
5
, which specifies the surface pattern that generates a desired diffracted output through its Fourier transform. To shape the optical wavefront, the ideal surface profile should contain a precise sum of sinusoidal waves, each with a well defined amplitude, spatial frequency and phase. However, because fabrication techniques typically yield profiles with at most a few depth levels, complex ‘wavy’ surfaces cannot be obtained, limiting the straightforward mathematical design and implementation of sophisticated diffractive optics. Here we present a simple yet powerful approach to eliminate this design–fabrication mismatch by demonstrating optical surfaces that contain an arbitrary number of specified sinusoids. We combine thermal scanning-probe lithography
6
–
8
and templating
9
to create periodic and aperiodic surface patterns with continuous depth control and sub-wavelength spatial resolution. Multicomponent linear gratings allow precise manipulation of electromagnetic signals through Fourier-spectrum engineering
10
. Consequently, we overcome a previous limitation in photonics by creating an ultrathin grating that simultaneously couples red, green and blue light at the same angle of incidence. More broadly, we analytically design and accurately replicate intricate two-dimensional moiré patterns
11
,
12
, quasicrystals
13
,
14
and holograms
15
,
16
, demonstrating a variety of previously unattainable diffractive surfaces. This approach may find application in optical devices (biosensors
17
, lasers
18
,
19
, metasurfaces
4
and modulators
20
) and emerging areas in photonics (topological structures
21
, transformation optics
22
and valleytronics
23
).
Combining thermal scanning-probe lithography with templating enables the production of high-quality gratings that manipulate light through Fourier-spectrum engineering in ways that are not achievable with conventional gratings.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2390-x</identifier><identifier>PMID: 32581384</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 142/126 ; 639/301/1019/1021 ; 639/624/1075 ; 639/624/399 ; Design ; Design and construction ; Diffraction gratings ; Diffraction patterns ; Diffractive optics ; Fabrication ; Fourier transformations ; Fourier transforms ; Frequency dependence ; Humanities and Social Sciences ; Incidence angle ; multidisciplinary ; Optical communication ; Optics ; Photonics ; Properties ; Science ; Science (multidisciplinary) ; Sine waves ; Spatial discrimination ; Spatial resolution ; Wave fronts</subject><ispartof>Nature (London), 2020-06, Vol.582 (7813), p.506-510</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 25, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c629t-455464aa764e5499e76ed5808e6768c2c3989f1204cdbc87fd18674508ef9d823</citedby><cites>FETCH-LOGICAL-c629t-455464aa764e5499e76ed5808e6768c2c3989f1204cdbc87fd18674508ef9d823</cites><orcidid>0000-0002-4650-9473 ; 0000-0001-7498-9729 ; 0000-0002-4775-0859 ; 0000-0002-3765-0678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2390-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2390-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32581384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lassaline, Nolan</creatorcontrib><creatorcontrib>Brechbühler, Raphael</creatorcontrib><creatorcontrib>Vonk, Sander J. W.</creatorcontrib><creatorcontrib>Ridderbeek, Korneel</creatorcontrib><creatorcontrib>Spieser, Martin</creatorcontrib><creatorcontrib>Bisig, Samuel</creatorcontrib><creatorcontrib>le Feber, Boris</creatorcontrib><creatorcontrib>Rabouw, Freddy T.</creatorcontrib><creatorcontrib>Norris, David J.</creatorcontrib><title>Optical Fourier surfaces</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Gratings
1
and holograms
2
use patterned surfaces to tailor optical signals by diffraction. Despite their long history, variants with remarkable functionalities continue to be developed
3
,
4
. Further advances could exploit Fourier optics
5
, which specifies the surface pattern that generates a desired diffracted output through its Fourier transform. To shape the optical wavefront, the ideal surface profile should contain a precise sum of sinusoidal waves, each with a well defined amplitude, spatial frequency and phase. However, because fabrication techniques typically yield profiles with at most a few depth levels, complex ‘wavy’ surfaces cannot be obtained, limiting the straightforward mathematical design and implementation of sophisticated diffractive optics. Here we present a simple yet powerful approach to eliminate this design–fabrication mismatch by demonstrating optical surfaces that contain an arbitrary number of specified sinusoids. We combine thermal scanning-probe lithography
6
–
8
and templating
9
to create periodic and aperiodic surface patterns with continuous depth control and sub-wavelength spatial resolution. Multicomponent linear gratings allow precise manipulation of electromagnetic signals through Fourier-spectrum engineering
10
. Consequently, we overcome a previous limitation in photonics by creating an ultrathin grating that simultaneously couples red, green and blue light at the same angle of incidence. More broadly, we analytically design and accurately replicate intricate two-dimensional moiré patterns
11
,
12
, quasicrystals
13
,
14
and holograms
15
,
16
, demonstrating a variety of previously unattainable diffractive surfaces. This approach may find application in optical devices (biosensors
17
, lasers
18
,
19
, metasurfaces
4
and modulators
20
) and emerging areas in photonics (topological structures
21
, transformation optics
22
and valleytronics
23
).
Combining thermal scanning-probe lithography with templating enables the production of high-quality gratings that manipulate light through Fourier-spectrum engineering in ways that are not achievable with conventional gratings.</description><subject>140/125</subject><subject>142/126</subject><subject>639/301/1019/1021</subject><subject>639/624/1075</subject><subject>639/624/399</subject><subject>Design</subject><subject>Design and construction</subject><subject>Diffraction gratings</subject><subject>Diffraction patterns</subject><subject>Diffractive optics</subject><subject>Fabrication</subject><subject>Fourier transformations</subject><subject>Fourier transforms</subject><subject>Frequency dependence</subject><subject>Humanities and Social Sciences</subject><subject>Incidence angle</subject><subject>multidisciplinary</subject><subject>Optical communication</subject><subject>Optics</subject><subject>Photonics</subject><subject>Properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sine waves</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Wave fronts</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s9LHDEUB_AgFl2t9_YiopeWEptk8vNSWJbaCqLQKj2GmHkzjczOrMlM2f73zbJWHVmZw8Dk876Zx3sIvafklJJCf06cCi0xYQSzwhC83EITypXEXGq1jSaEMI2JLuQu2kvpjhAiqOI7aLdgQtNC8wl6d7Xog3fN0Vk3xADxKA2xch7SW_Smck2Cg4f3Pro5-3o9-44vrr6dz6YX2EtmesyF4JI7pyQHwY0BJaEUmmiQSmrPfGG0qSgj3Je3XquqpFoqLjKoTKlZsY--rHMXw-0cSg9tH11jFzHMXfxrOxfs-KQNv23d_bGKUimNyAEfHgJidz9A6u08JA9N41rohmQZpyq3qhnP9OQFvctdt7m9rBg1hmhNnlTtGrChrbp8r1-F2qlkSjIqeZEV3qBqaCH_ZNdCFfLnkT_e4P0i3Nvn6HQDyk8J8-A3pn4cFWTTw7Kv3ZCSPf_5Y2w_vW6n179ml2NN19rHLqUI1eNIKLGr7bPr7bN5--xq--wy1xw-n-Vjxf91y4CtQcpHbQ3xaQCvp_4DukzeBw</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Lassaline, Nolan</creator><creator>Brechbühler, Raphael</creator><creator>Vonk, Sander J. W.</creator><creator>Ridderbeek, Korneel</creator><creator>Spieser, Martin</creator><creator>Bisig, Samuel</creator><creator>le Feber, Boris</creator><creator>Rabouw, Freddy T.</creator><creator>Norris, David J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4650-9473</orcidid><orcidid>https://orcid.org/0000-0001-7498-9729</orcidid><orcidid>https://orcid.org/0000-0002-4775-0859</orcidid><orcidid>https://orcid.org/0000-0002-3765-0678</orcidid></search><sort><creationdate>20200625</creationdate><title>Optical Fourier surfaces</title><author>Lassaline, Nolan ; Brechbühler, Raphael ; Vonk, Sander J. W. ; Ridderbeek, Korneel ; Spieser, Martin ; Bisig, Samuel ; le Feber, Boris ; Rabouw, Freddy T. ; Norris, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629t-455464aa764e5499e76ed5808e6768c2c3989f1204cdbc87fd18674508ef9d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/125</topic><topic>142/126</topic><topic>639/301/1019/1021</topic><topic>639/624/1075</topic><topic>639/624/399</topic><topic>Design</topic><topic>Design and construction</topic><topic>Diffraction gratings</topic><topic>Diffraction patterns</topic><topic>Diffractive optics</topic><topic>Fabrication</topic><topic>Fourier transformations</topic><topic>Fourier transforms</topic><topic>Frequency dependence</topic><topic>Humanities and Social Sciences</topic><topic>Incidence angle</topic><topic>multidisciplinary</topic><topic>Optical communication</topic><topic>Optics</topic><topic>Photonics</topic><topic>Properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sine waves</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lassaline, Nolan</creatorcontrib><creatorcontrib>Brechbühler, Raphael</creatorcontrib><creatorcontrib>Vonk, Sander J. W.</creatorcontrib><creatorcontrib>Ridderbeek, Korneel</creatorcontrib><creatorcontrib>Spieser, Martin</creatorcontrib><creatorcontrib>Bisig, Samuel</creatorcontrib><creatorcontrib>le Feber, Boris</creatorcontrib><creatorcontrib>Rabouw, Freddy T.</creatorcontrib><creatorcontrib>Norris, David J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lassaline, Nolan</au><au>Brechbühler, Raphael</au><au>Vonk, Sander J. W.</au><au>Ridderbeek, Korneel</au><au>Spieser, Martin</au><au>Bisig, Samuel</au><au>le Feber, Boris</au><au>Rabouw, Freddy T.</au><au>Norris, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Fourier surfaces</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-06-25</date><risdate>2020</risdate><volume>582</volume><issue>7813</issue><spage>506</spage><epage>510</epage><pages>506-510</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Gratings
1
and holograms
2
use patterned surfaces to tailor optical signals by diffraction. Despite their long history, variants with remarkable functionalities continue to be developed
3
,
4
. Further advances could exploit Fourier optics
5
, which specifies the surface pattern that generates a desired diffracted output through its Fourier transform. To shape the optical wavefront, the ideal surface profile should contain a precise sum of sinusoidal waves, each with a well defined amplitude, spatial frequency and phase. However, because fabrication techniques typically yield profiles with at most a few depth levels, complex ‘wavy’ surfaces cannot be obtained, limiting the straightforward mathematical design and implementation of sophisticated diffractive optics. Here we present a simple yet powerful approach to eliminate this design–fabrication mismatch by demonstrating optical surfaces that contain an arbitrary number of specified sinusoids. We combine thermal scanning-probe lithography
6
–
8
and templating
9
to create periodic and aperiodic surface patterns with continuous depth control and sub-wavelength spatial resolution. Multicomponent linear gratings allow precise manipulation of electromagnetic signals through Fourier-spectrum engineering
10
. Consequently, we overcome a previous limitation in photonics by creating an ultrathin grating that simultaneously couples red, green and blue light at the same angle of incidence. More broadly, we analytically design and accurately replicate intricate two-dimensional moiré patterns
11
,
12
, quasicrystals
13
,
14
and holograms
15
,
16
, demonstrating a variety of previously unattainable diffractive surfaces. This approach may find application in optical devices (biosensors
17
, lasers
18
,
19
, metasurfaces
4
and modulators
20
) and emerging areas in photonics (topological structures
21
, transformation optics
22
and valleytronics
23
).
Combining thermal scanning-probe lithography with templating enables the production of high-quality gratings that manipulate light through Fourier-spectrum engineering in ways that are not achievable with conventional gratings.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32581384</pmid><doi>10.1038/s41586-020-2390-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4650-9473</orcidid><orcidid>https://orcid.org/0000-0001-7498-9729</orcidid><orcidid>https://orcid.org/0000-0002-4775-0859</orcidid><orcidid>https://orcid.org/0000-0002-3765-0678</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-06, Vol.582 (7813), p.506-510 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7116695 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 140/125 142/126 639/301/1019/1021 639/624/1075 639/624/399 Design Design and construction Diffraction gratings Diffraction patterns Diffractive optics Fabrication Fourier transformations Fourier transforms Frequency dependence Humanities and Social Sciences Incidence angle multidisciplinary Optical communication Optics Photonics Properties Science Science (multidisciplinary) Sine waves Spatial discrimination Spatial resolution Wave fronts |
title | Optical Fourier surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Fourier%20surfaces&rft.jtitle=Nature%20(London)&rft.au=Lassaline,%20Nolan&rft.date=2020-06-25&rft.volume=582&rft.issue=7813&rft.spage=506&rft.epage=510&rft.pages=506-510&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2390-x&rft_dat=%3Cgale_pubme%3EA627621643%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421990880&rft_id=info:pmid/32581384&rft_galeid=A627621643&rfr_iscdi=true |