Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions
We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s t and exponenti...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2011-01, Vol.55 (1), p.687-702 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 702 |
---|---|
container_issue | 1 |
container_start_page | 687 |
container_title | Computational statistics & data analysis |
container_volume | 55 |
creator | Wan, Wai-Yin Chan, Jennifer So-Kuen |
description | We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s
t
and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models. |
doi_str_mv | 10.1016/j.csda.2010.06.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7114253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310002562</els_id><sourcerecordid>2390164195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-3952d802898599b91ad3a05989b6be0cc1bada2ca1423ed05e01778e4e947c883</originalsourceid><addsrcrecordid>eNp9kU2rEzEUhgdRvPXqH3AhsxHdTM3HZJKACHrxkwu60J0QMslpmzKT9ObMFPrvTWkturmLkwPJ877knLeqnlOypIR2b7ZLh94uGSkXpFsSSh9UC6okayQX7GG1KJBsdCv5VfUEcUsIYa1Uj6srzpiSQpJF9fuDPQAGG2sb7XDAgHVa1Tn1M071jxQQU6zXkEaYcnD1LicHiPWYPAz1jCGu6w3Y_aGZbBjA1z5gAft5Cini0-rRyg4Iz879uvr16ePPmy_N7ffPX2_e3zauE2RquBbMK8KUVkLrXlPruSVCK913PRDnaG-9Zc7SlnHwRAChUipooczmlOLX1buT727uR_AO4pTtYHY5jDYfTLLB_P8Sw8as095IWiwFLwavzgY53c2AkxkDOhgGGyHNaFSr21Z0khby9b0k47psvaVaFJSdUJcTYobV5UOUmGOAZmuOAZpjgIZ0pgRYRN9Oogw7cBcFABzRaM3ecCtEOQ6lipKWFkod-65Up6SRhJnNNBazF__u5eL2N_4CvDwDFp0dVtlGF_DCMc4ZpUwW7u2Jg5LiPkA26AJEBz5kcJPxKdw31B-YPNQf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390164195</pqid></control><display><type>article</type><title>Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wan, Wai-Yin ; Chan, Jennifer So-Kuen</creator><creatorcontrib>Wan, Wai-Yin ; Chan, Jennifer So-Kuen</creatorcontrib><description>We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s
t
and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.06.011</identifier><identifier>PMID: 32287570</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian analysis ; Computation ; Computer simulation ; Data processing ; Exact sciences and technology ; Exponential power distribution ; Exponential power distribution Geometric process Markov chain Monte Carlo algorithm Mixture effect Outlier diagnosis Scale mixture representation ; General topics ; Geometric process ; Linear inference, regression ; Markov chain Monte Carlo algorithm ; Mathematical models ; Mathematics ; Mixture effect ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Outlier diagnosis ; Probability and statistics ; Representations ; Scale mixture representation ; Sciences and techniques of general use ; Statistics ; Trends</subject><ispartof>Computational statistics & data analysis, 2011-01, Vol.55 (1), p.687-702</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved. 2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-3952d802898599b91ad3a05989b6be0cc1bada2ca1423ed05e01778e4e947c883</citedby><cites>FETCH-LOGICAL-c650t-3952d802898599b91ad3a05989b6be0cc1bada2ca1423ed05e01778e4e947c883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2010.06.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23321127$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32287570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a1_3ap_3a687-702.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Wai-Yin</creatorcontrib><creatorcontrib>Chan, Jennifer So-Kuen</creatorcontrib><title>Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions</title><title>Computational statistics & data analysis</title><addtitle>Comput Stat Data Anal</addtitle><description>We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s
t
and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models.</description><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Exact sciences and technology</subject><subject>Exponential power distribution</subject><subject>Exponential power distribution Geometric process Markov chain Monte Carlo algorithm Mixture effect Outlier diagnosis Scale mixture representation</subject><subject>General topics</subject><subject>Geometric process</subject><subject>Linear inference, regression</subject><subject>Markov chain Monte Carlo algorithm</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mixture effect</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Outlier diagnosis</subject><subject>Probability and statistics</subject><subject>Representations</subject><subject>Scale mixture representation</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Trends</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kU2rEzEUhgdRvPXqH3AhsxHdTM3HZJKACHrxkwu60J0QMslpmzKT9ObMFPrvTWkturmLkwPJ877knLeqnlOypIR2b7ZLh94uGSkXpFsSSh9UC6okayQX7GG1KJBsdCv5VfUEcUsIYa1Uj6srzpiSQpJF9fuDPQAGG2sb7XDAgHVa1Tn1M071jxQQU6zXkEaYcnD1LicHiPWYPAz1jCGu6w3Y_aGZbBjA1z5gAft5Cini0-rRyg4Iz879uvr16ePPmy_N7ffPX2_e3zauE2RquBbMK8KUVkLrXlPruSVCK913PRDnaG-9Zc7SlnHwRAChUipooczmlOLX1buT727uR_AO4pTtYHY5jDYfTLLB_P8Sw8as095IWiwFLwavzgY53c2AkxkDOhgGGyHNaFSr21Z0khby9b0k47psvaVaFJSdUJcTYobV5UOUmGOAZmuOAZpjgIZ0pgRYRN9Oogw7cBcFABzRaM3ecCtEOQ6lipKWFkod-65Up6SRhJnNNBazF__u5eL2N_4CvDwDFp0dVtlGF_DCMc4ZpUwW7u2Jg5LiPkA26AJEBz5kcJPxKdw31B-YPNQf</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Wan, Wai-Yin</creator><creator>Chan, Jennifer So-Kuen</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions</title><author>Wan, Wai-Yin ; Chan, Jennifer So-Kuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-3952d802898599b91ad3a05989b6be0cc1bada2ca1423ed05e01778e4e947c883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Exact sciences and technology</topic><topic>Exponential power distribution</topic><topic>Exponential power distribution Geometric process Markov chain Monte Carlo algorithm Mixture effect Outlier diagnosis Scale mixture representation</topic><topic>General topics</topic><topic>Geometric process</topic><topic>Linear inference, regression</topic><topic>Markov chain Monte Carlo algorithm</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mixture effect</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Outlier diagnosis</topic><topic>Probability and statistics</topic><topic>Representations</topic><topic>Scale mixture representation</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Wai-Yin</creatorcontrib><creatorcontrib>Chan, Jennifer So-Kuen</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Wai-Yin</au><au>Chan, Jennifer So-Kuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions</atitle><jtitle>Computational statistics & data analysis</jtitle><addtitle>Comput Stat Data Anal</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>55</volume><issue>1</issue><spage>687</spage><epage>702</epage><pages>687-702</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s
t
and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>32287570</pmid><doi>10.1016/j.csda.2010.06.011</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2011-01, Vol.55 (1), p.687-702 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7114253 |
source | RePEc; Elsevier ScienceDirect Journals Complete |
subjects | Bayesian analysis Computation Computer simulation Data processing Exact sciences and technology Exponential power distribution Exponential power distribution Geometric process Markov chain Monte Carlo algorithm Mixture effect Outlier diagnosis Scale mixture representation General topics Geometric process Linear inference, regression Markov chain Monte Carlo algorithm Mathematical models Mathematics Mixture effect Multivariate analysis Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Outlier diagnosis Probability and statistics Representations Scale mixture representation Sciences and techniques of general use Statistics Trends |
title | Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%20robust%20Poisson%20geometric%20process%20model%20using%20heavy-tailed%20distributions&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Wan,%20Wai-Yin&rft.date=2011-01-01&rft.volume=55&rft.issue=1&rft.spage=687&rft.epage=702&rft.pages=687-702&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.06.011&rft_dat=%3Cproquest_pubme%3E2390164195%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390164195&rft_id=info:pmid/32287570&rft_els_id=S0167947310002562&rfr_iscdi=true |