Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions

We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s t and exponenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2011-01, Vol.55 (1), p.687-702
Hauptverfasser: Wan, Wai-Yin, Chan, Jennifer So-Kuen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 702
container_issue 1
container_start_page 687
container_title Computational statistics & data analysis
container_volume 55
creator Wan, Wai-Yin
Chan, Jennifer So-Kuen
description We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s t and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models.
doi_str_mv 10.1016/j.csda.2010.06.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7114253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310002562</els_id><sourcerecordid>2390164195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-3952d802898599b91ad3a05989b6be0cc1bada2ca1423ed05e01778e4e947c883</originalsourceid><addsrcrecordid>eNp9kU2rEzEUhgdRvPXqH3AhsxHdTM3HZJKACHrxkwu60J0QMslpmzKT9ObMFPrvTWkturmLkwPJ877knLeqnlOypIR2b7ZLh94uGSkXpFsSSh9UC6okayQX7GG1KJBsdCv5VfUEcUsIYa1Uj6srzpiSQpJF9fuDPQAGG2sb7XDAgHVa1Tn1M071jxQQU6zXkEaYcnD1LicHiPWYPAz1jCGu6w3Y_aGZbBjA1z5gAft5Cini0-rRyg4Iz879uvr16ePPmy_N7ffPX2_e3zauE2RquBbMK8KUVkLrXlPruSVCK913PRDnaG-9Zc7SlnHwRAChUipooczmlOLX1buT727uR_AO4pTtYHY5jDYfTLLB_P8Sw8as095IWiwFLwavzgY53c2AkxkDOhgGGyHNaFSr21Z0khby9b0k47psvaVaFJSdUJcTYobV5UOUmGOAZmuOAZpjgIZ0pgRYRN9Oogw7cBcFABzRaM3ecCtEOQ6lipKWFkod-65Up6SRhJnNNBazF__u5eL2N_4CvDwDFp0dVtlGF_DCMc4ZpUwW7u2Jg5LiPkA26AJEBz5kcJPxKdw31B-YPNQf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390164195</pqid></control><display><type>article</type><title>Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wan, Wai-Yin ; Chan, Jennifer So-Kuen</creator><creatorcontrib>Wan, Wai-Yin ; Chan, Jennifer So-Kuen</creatorcontrib><description>We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s t and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.06.011</identifier><identifier>PMID: 32287570</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian analysis ; Computation ; Computer simulation ; Data processing ; Exact sciences and technology ; Exponential power distribution ; Exponential power distribution Geometric process Markov chain Monte Carlo algorithm Mixture effect Outlier diagnosis Scale mixture representation ; General topics ; Geometric process ; Linear inference, regression ; Markov chain Monte Carlo algorithm ; Mathematical models ; Mathematics ; Mixture effect ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Outlier diagnosis ; Probability and statistics ; Representations ; Scale mixture representation ; Sciences and techniques of general use ; Statistics ; Trends</subject><ispartof>Computational statistics &amp; data analysis, 2011-01, Vol.55 (1), p.687-702</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved. 2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-3952d802898599b91ad3a05989b6be0cc1bada2ca1423ed05e01778e4e947c883</citedby><cites>FETCH-LOGICAL-c650t-3952d802898599b91ad3a05989b6be0cc1bada2ca1423ed05e01778e4e947c883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2010.06.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23321127$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32287570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a1_3ap_3a687-702.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Wai-Yin</creatorcontrib><creatorcontrib>Chan, Jennifer So-Kuen</creatorcontrib><title>Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions</title><title>Computational statistics &amp; data analysis</title><addtitle>Comput Stat Data Anal</addtitle><description>We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s t and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models.</description><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Exact sciences and technology</subject><subject>Exponential power distribution</subject><subject>Exponential power distribution Geometric process Markov chain Monte Carlo algorithm Mixture effect Outlier diagnosis Scale mixture representation</subject><subject>General topics</subject><subject>Geometric process</subject><subject>Linear inference, regression</subject><subject>Markov chain Monte Carlo algorithm</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mixture effect</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Outlier diagnosis</subject><subject>Probability and statistics</subject><subject>Representations</subject><subject>Scale mixture representation</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Trends</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kU2rEzEUhgdRvPXqH3AhsxHdTM3HZJKACHrxkwu60J0QMslpmzKT9ObMFPrvTWkturmLkwPJ877knLeqnlOypIR2b7ZLh94uGSkXpFsSSh9UC6okayQX7GG1KJBsdCv5VfUEcUsIYa1Uj6srzpiSQpJF9fuDPQAGG2sb7XDAgHVa1Tn1M071jxQQU6zXkEaYcnD1LicHiPWYPAz1jCGu6w3Y_aGZbBjA1z5gAft5Cini0-rRyg4Iz879uvr16ePPmy_N7ffPX2_e3zauE2RquBbMK8KUVkLrXlPruSVCK913PRDnaG-9Zc7SlnHwRAChUipooczmlOLX1buT727uR_AO4pTtYHY5jDYfTLLB_P8Sw8as095IWiwFLwavzgY53c2AkxkDOhgGGyHNaFSr21Z0khby9b0k47psvaVaFJSdUJcTYobV5UOUmGOAZmuOAZpjgIZ0pgRYRN9Oogw7cBcFABzRaM3ecCtEOQ6lipKWFkod-65Up6SRhJnNNBazF__u5eL2N_4CvDwDFp0dVtlGF_DCMc4ZpUwW7u2Jg5LiPkA26AJEBz5kcJPxKdw31B-YPNQf</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Wan, Wai-Yin</creator><creator>Chan, Jennifer So-Kuen</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions</title><author>Wan, Wai-Yin ; Chan, Jennifer So-Kuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-3952d802898599b91ad3a05989b6be0cc1bada2ca1423ed05e01778e4e947c883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Exact sciences and technology</topic><topic>Exponential power distribution</topic><topic>Exponential power distribution Geometric process Markov chain Monte Carlo algorithm Mixture effect Outlier diagnosis Scale mixture representation</topic><topic>General topics</topic><topic>Geometric process</topic><topic>Linear inference, regression</topic><topic>Markov chain Monte Carlo algorithm</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mixture effect</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Outlier diagnosis</topic><topic>Probability and statistics</topic><topic>Representations</topic><topic>Scale mixture representation</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Wai-Yin</creatorcontrib><creatorcontrib>Chan, Jennifer So-Kuen</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Wai-Yin</au><au>Chan, Jennifer So-Kuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><addtitle>Comput Stat Data Anal</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>55</volume><issue>1</issue><spage>687</spage><epage>702</epage><pages>687-702</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>We propose a robust Poisson geometric process model with heavy-tailed distributions to cope with the problem of outliers as it may lead to an overestimation of mean and variance resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions namely Student’s t and exponential power distributions with different tailednesses and kurtoses are used and they are represented in scale mixture of normal and scale mixture of uniform respectively. The proposed model is capable of describing the trend and meanwhile the mixing parameters in the scale mixture representations can detect the outlying observations. Simulations and real data analysis are performed to investigate the properties of the models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>32287570</pmid><doi>10.1016/j.csda.2010.06.011</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2011-01, Vol.55 (1), p.687-702
issn 0167-9473
1872-7352
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7114253
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Bayesian analysis
Computation
Computer simulation
Data processing
Exact sciences and technology
Exponential power distribution
Exponential power distribution Geometric process Markov chain Monte Carlo algorithm Mixture effect Outlier diagnosis Scale mixture representation
General topics
Geometric process
Linear inference, regression
Markov chain Monte Carlo algorithm
Mathematical models
Mathematics
Mixture effect
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Outlier diagnosis
Probability and statistics
Representations
Scale mixture representation
Sciences and techniques of general use
Statistics
Trends
title Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%20robust%20Poisson%20geometric%20process%20model%20using%20heavy-tailed%20distributions&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Wan,%20Wai-Yin&rft.date=2011-01-01&rft.volume=55&rft.issue=1&rft.spage=687&rft.epage=702&rft.pages=687-702&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.06.011&rft_dat=%3Cproquest_pubme%3E2390164195%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390164195&rft_id=info:pmid/32287570&rft_els_id=S0167947310002562&rfr_iscdi=true