Resources to Discover and Use Short Linear Motifs in Viral Proteins
Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexe...
Gespeichert in:
Veröffentlicht in: | Trends in biotechnology (Regular ed.) 2020-01, Vol.38 (1), p.113-127 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 113 |
container_title | Trends in biotechnology (Regular ed.) |
container_volume | 38 |
creator | Hraber, Peter O’Maille, Paul E. Silberfarb, Andrew Davis-Anderson, Katie Generous, Nicholas McMahon, Benjamin H. Fair, Jeanne M. |
description | Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.
•Short linear motifs (SLiMs) are patterns of three to ten consecutive AAs used by eukaryotic cells for tasks that include: signaling, localization, degradation, and proteolytic cleavage.•Viruses use SLiMs to their advantage, including interference with antiviral innate immune pathways.•Viral SLiMs can tolerate mutations, evolve quickly to modify host interactions, and co-occur in a modular manner or involve multiprotein complexes.•SLiMs are useful in synthetic biology, where minor edits can alter target specificity, modulate persistence, reprogram interactions with cell-signaling domains, and alter protein function in myriad other ways.•Aside from possible beneficial uses, for example, to produce better immunogens and develop therapeutic interventions against infectious disease, SLiMs may help characterize new and emerging threats to global health. |
doi_str_mv | 10.1016/j.tibtech.2019.07.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7114124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779919301738</els_id><sourcerecordid>2330064515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-cddfc45ddd4f8e4de1c87301821b25aecaecdc3d6bea2d472d211b5f7475f76c3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7uzqT1ACXrx0W_noTvdFkXH9gBFFXa8hnVQ7GWaS3SQz4L83y4yLehFCcshTb9VbLyFPGLQMWP9i0xY_FbTrlgMbW1AtgLxHFmxQYyNg7O-TReVUo9Q4npHznDcAINTIHpIzwSRXMKoFWX7BHPfJYqYl0jc-23jARE1w9Coj_bqOqdCVD2gS_RiLnzP1gX73yWzp5xQL-pAfkQez2WZ8fHovyNXby2_L983q07sPy9erxsqxK411brayc87JeUDpkNlBCWADZxPvDNp6nBWun9BwJxV3nLGpm5VU9eqtuCAvj7rX-2mHzmIodQx9nfzOpJ86Gq___gl-rX_Eg1aMScZlFXh-EkjxZo-56F01jNutCRj3WXMhAHrZsa6iz_5BN3VNodqrFB_4AEr0leqOlE0x54Tz3TAM9G1MeqNPMenbmDQoXWOqdU__dHJX9TuXCrw6Alj3efCYdLYeg0XnE9qiXfT_afELTzmnZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2328280736</pqid></control><display><type>article</type><title>Resources to Discover and Use Short Linear Motifs in Viral Proteins</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Hraber, Peter ; O’Maille, Paul E. ; Silberfarb, Andrew ; Davis-Anderson, Katie ; Generous, Nicholas ; McMahon, Benjamin H. ; Fair, Jeanne M.</creator><creatorcontrib>Hraber, Peter ; O’Maille, Paul E. ; Silberfarb, Andrew ; Davis-Anderson, Katie ; Generous, Nicholas ; McMahon, Benjamin H. ; Fair, Jeanne M.</creatorcontrib><description>Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.
•Short linear motifs (SLiMs) are patterns of three to ten consecutive AAs used by eukaryotic cells for tasks that include: signaling, localization, degradation, and proteolytic cleavage.•Viruses use SLiMs to their advantage, including interference with antiviral innate immune pathways.•Viral SLiMs can tolerate mutations, evolve quickly to modify host interactions, and co-occur in a modular manner or involve multiprotein complexes.•SLiMs are useful in synthetic biology, where minor edits can alter target specificity, modulate persistence, reprogram interactions with cell-signaling domains, and alter protein function in myriad other ways.•Aside from possible beneficial uses, for example, to produce better immunogens and develop therapeutic interventions against infectious disease, SLiMs may help characterize new and emerging threats to global health.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2019.07.004</identifier><identifier>PMID: 31427097</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Motifs - immunology ; Amino acids ; Animals ; Antigens ; Apoptosis ; Autophagy ; B-Lymphocytes - immunology ; Biosecurity ; cell signaling ; Conserved sequence ; Evolution ; Gene Ontology ; Host-Pathogen Interactions - immunology ; host–pathogen interactions ; Humans ; immune modulation ; Immune response ; Information resources ; Interfaces ; Kinases ; Knowledge management ; Management tools ; Mimicry ; molecular mimicry ; Molecular Mimicry - immunology ; Mutation ; Ontology ; Pathogens ; Proteins ; Review ; short linear motifs ; Signal transduction ; Signal Transduction - immunology ; Synthetic Biology ; Tumor necrosis factor-TNF ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - immunology ; Viruses</subject><ispartof>Trends in biotechnology (Regular ed.), 2020-01, Vol.38 (1), p.113-127</ispartof><rights>2019 The Author(s)</rights><rights>Copyright © 2019 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>2019. The Author(s)</rights><rights>2019 The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-cddfc45ddd4f8e4de1c87301821b25aecaecdc3d6bea2d472d211b5f7475f76c3</citedby><cites>FETCH-LOGICAL-c495t-cddfc45ddd4f8e4de1c87301821b25aecaecdc3d6bea2d472d211b5f7475f76c3</cites><orcidid>0000-0002-2920-4897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2328280736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31427097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hraber, Peter</creatorcontrib><creatorcontrib>O’Maille, Paul E.</creatorcontrib><creatorcontrib>Silberfarb, Andrew</creatorcontrib><creatorcontrib>Davis-Anderson, Katie</creatorcontrib><creatorcontrib>Generous, Nicholas</creatorcontrib><creatorcontrib>McMahon, Benjamin H.</creatorcontrib><creatorcontrib>Fair, Jeanne M.</creatorcontrib><title>Resources to Discover and Use Short Linear Motifs in Viral Proteins</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.
•Short linear motifs (SLiMs) are patterns of three to ten consecutive AAs used by eukaryotic cells for tasks that include: signaling, localization, degradation, and proteolytic cleavage.•Viruses use SLiMs to their advantage, including interference with antiviral innate immune pathways.•Viral SLiMs can tolerate mutations, evolve quickly to modify host interactions, and co-occur in a modular manner or involve multiprotein complexes.•SLiMs are useful in synthetic biology, where minor edits can alter target specificity, modulate persistence, reprogram interactions with cell-signaling domains, and alter protein function in myriad other ways.•Aside from possible beneficial uses, for example, to produce better immunogens and develop therapeutic interventions against infectious disease, SLiMs may help characterize new and emerging threats to global health.</description><subject>Amino Acid Motifs - immunology</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antigens</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>B-Lymphocytes - immunology</subject><subject>Biosecurity</subject><subject>cell signaling</subject><subject>Conserved sequence</subject><subject>Evolution</subject><subject>Gene Ontology</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>host–pathogen interactions</subject><subject>Humans</subject><subject>immune modulation</subject><subject>Immune response</subject><subject>Information resources</subject><subject>Interfaces</subject><subject>Kinases</subject><subject>Knowledge management</subject><subject>Management tools</subject><subject>Mimicry</subject><subject>molecular mimicry</subject><subject>Molecular Mimicry - immunology</subject><subject>Mutation</subject><subject>Ontology</subject><subject>Pathogens</subject><subject>Proteins</subject><subject>Review</subject><subject>short linear motifs</subject><subject>Signal transduction</subject><subject>Signal Transduction - immunology</subject><subject>Synthetic Biology</subject><subject>Tumor necrosis factor-TNF</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - immunology</subject><subject>Viruses</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU2LFDEQhoMo7uzqT1ACXrx0W_noTvdFkXH9gBFFXa8hnVQ7GWaS3SQz4L83y4yLehFCcshTb9VbLyFPGLQMWP9i0xY_FbTrlgMbW1AtgLxHFmxQYyNg7O-TReVUo9Q4npHznDcAINTIHpIzwSRXMKoFWX7BHPfJYqYl0jc-23jARE1w9Coj_bqOqdCVD2gS_RiLnzP1gX73yWzp5xQL-pAfkQez2WZ8fHovyNXby2_L983q07sPy9erxsqxK411brayc87JeUDpkNlBCWADZxPvDNp6nBWun9BwJxV3nLGpm5VU9eqtuCAvj7rX-2mHzmIodQx9nfzOpJ86Gq___gl-rX_Eg1aMScZlFXh-EkjxZo-56F01jNutCRj3WXMhAHrZsa6iz_5BN3VNodqrFB_4AEr0leqOlE0x54Tz3TAM9G1MeqNPMenbmDQoXWOqdU__dHJX9TuXCrw6Alj3efCYdLYeg0XnE9qiXfT_afELTzmnZQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Hraber, Peter</creator><creator>O’Maille, Paul E.</creator><creator>Silberfarb, Andrew</creator><creator>Davis-Anderson, Katie</creator><creator>Generous, Nicholas</creator><creator>McMahon, Benjamin H.</creator><creator>Fair, Jeanne M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><general>The Author(s). Published by Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2920-4897</orcidid></search><sort><creationdate>20200101</creationdate><title>Resources to Discover and Use Short Linear Motifs in Viral Proteins</title><author>Hraber, Peter ; O’Maille, Paul E. ; Silberfarb, Andrew ; Davis-Anderson, Katie ; Generous, Nicholas ; McMahon, Benjamin H. ; Fair, Jeanne M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-cddfc45ddd4f8e4de1c87301821b25aecaecdc3d6bea2d472d211b5f7475f76c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino Acid Motifs - immunology</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antigens</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>B-Lymphocytes - immunology</topic><topic>Biosecurity</topic><topic>cell signaling</topic><topic>Conserved sequence</topic><topic>Evolution</topic><topic>Gene Ontology</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>host–pathogen interactions</topic><topic>Humans</topic><topic>immune modulation</topic><topic>Immune response</topic><topic>Information resources</topic><topic>Interfaces</topic><topic>Kinases</topic><topic>Knowledge management</topic><topic>Management tools</topic><topic>Mimicry</topic><topic>molecular mimicry</topic><topic>Molecular Mimicry - immunology</topic><topic>Mutation</topic><topic>Ontology</topic><topic>Pathogens</topic><topic>Proteins</topic><topic>Review</topic><topic>short linear motifs</topic><topic>Signal transduction</topic><topic>Signal Transduction - immunology</topic><topic>Synthetic Biology</topic><topic>Tumor necrosis factor-TNF</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - immunology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hraber, Peter</creatorcontrib><creatorcontrib>O’Maille, Paul E.</creatorcontrib><creatorcontrib>Silberfarb, Andrew</creatorcontrib><creatorcontrib>Davis-Anderson, Katie</creatorcontrib><creatorcontrib>Generous, Nicholas</creatorcontrib><creatorcontrib>McMahon, Benjamin H.</creatorcontrib><creatorcontrib>Fair, Jeanne M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hraber, Peter</au><au>O’Maille, Paul E.</au><au>Silberfarb, Andrew</au><au>Davis-Anderson, Katie</au><au>Generous, Nicholas</au><au>McMahon, Benjamin H.</au><au>Fair, Jeanne M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resources to Discover and Use Short Linear Motifs in Viral Proteins</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>38</volume><issue>1</issue><spage>113</spage><epage>127</epage><pages>113-127</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.
•Short linear motifs (SLiMs) are patterns of three to ten consecutive AAs used by eukaryotic cells for tasks that include: signaling, localization, degradation, and proteolytic cleavage.•Viruses use SLiMs to their advantage, including interference with antiviral innate immune pathways.•Viral SLiMs can tolerate mutations, evolve quickly to modify host interactions, and co-occur in a modular manner or involve multiprotein complexes.•SLiMs are useful in synthetic biology, where minor edits can alter target specificity, modulate persistence, reprogram interactions with cell-signaling domains, and alter protein function in myriad other ways.•Aside from possible beneficial uses, for example, to produce better immunogens and develop therapeutic interventions against infectious disease, SLiMs may help characterize new and emerging threats to global health.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31427097</pmid><doi>10.1016/j.tibtech.2019.07.004</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2920-4897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7799 |
ispartof | Trends in biotechnology (Regular ed.), 2020-01, Vol.38 (1), p.113-127 |
issn | 0167-7799 1879-3096 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7114124 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Amino Acid Motifs - immunology Amino acids Animals Antigens Apoptosis Autophagy B-Lymphocytes - immunology Biosecurity cell signaling Conserved sequence Evolution Gene Ontology Host-Pathogen Interactions - immunology host–pathogen interactions Humans immune modulation Immune response Information resources Interfaces Kinases Knowledge management Management tools Mimicry molecular mimicry Molecular Mimicry - immunology Mutation Ontology Pathogens Proteins Review short linear motifs Signal transduction Signal Transduction - immunology Synthetic Biology Tumor necrosis factor-TNF Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - immunology Viruses |
title | Resources to Discover and Use Short Linear Motifs in Viral Proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resources%20to%20Discover%20and%20Use%20Short%20Linear%20Motifs%20in%20Viral%20Proteins&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Hraber,%20Peter&rft.date=2020-01-01&rft.volume=38&rft.issue=1&rft.spage=113&rft.epage=127&rft.pages=113-127&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2019.07.004&rft_dat=%3Cproquest_pubme%3E2330064515%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2328280736&rft_id=info:pmid/31427097&rft_els_id=S0167779919301738&rfr_iscdi=true |