Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer
Background Several pro-oncogenic signals, including transforming growth factor beta (TGF-β) signalling from tumour microenvironment, generate intratumoural phenotypic heterogeneity and result in tumour progression and treatment failure. However, the precise diagnosis for tumour areas containing subc...
Gespeichert in:
Veröffentlicht in: | British journal of cancer 2020-03, Vol.122 (7), p.995-1004 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1004 |
---|---|
container_issue | 7 |
container_start_page | 995 |
container_title | British journal of cancer |
container_volume | 122 |
creator | Ishii, Hiroki Saitoh, Masao Sakamoto, Kaname Sakamoto, Kei Saigusa, Daisuke Kasai, Hirotake Ashizawa, Kei Miyazawa, Keiji Takeda, Sen Masuyama, Keisuke Yoshimura, Kentaro |
description | Background
Several pro-oncogenic signals, including transforming growth factor beta (TGF-β) signalling from tumour microenvironment, generate intratumoural phenotypic heterogeneity and result in tumour progression and treatment failure. However, the precise diagnosis for tumour areas containing subclones with cytokine-induced malignant properties remains clinically challenging.
Methods
We established a rapid diagnostic system based on the combination of probe electrospray ionisation-mass spectrometry (PESI-MS) and machine learning without the aid of immunohistological and biochemical procedures to identify tumour areas with heterogeneous TGF-β signalling status in head and neck squamous cell carcinoma (HNSCC). A total of 240 and 90 mass spectra were obtained from TGF-β-unstimulated and -stimulated HNSCC cells, respectively, by PESI-MS and were used for the construction of a diagnostic system based on lipidome.
Results
This discriminant algorithm achieved 98.79% accuracy in discrimination of TGF-β1-stimulated cells from untreated cells. In clinical human HNSCC tissues, this approach achieved determination of tumour areas with activated TGF-β signalling as efficiently as a conventional histopathological assessment using phosphorylated-SMAD2 staining. Furthermore, several altered peaks on mass spectra were identified as phosphatidylcholine species in TGF-β-stimulated HNSCC cells.
Conclusions
This diagnostic system combined with PESI-MS and machine learning encourages us to clinically diagnose intratumoural phenotypic heterogeneity induced by TGF-β. |
doi_str_mv | 10.1038/s41416-020-0732-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7109155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2351482844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-1b0d079b82b040db069f66619e1aa891ec3f38bdbbd45e850944b12d4a99ef863</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEotPCA7BBltiwCVw7TmJvkFBFW6SR2JS15Z-bjEtiD3am1Wx4KB6EZ8KjKeVHYmVfne8c_5yqekHhDYVGvM2cctrVwKCGvmH1_lG1om3ZUMH6x9UKAPoaJIOT6jTnmzJKEP3T6qRhxQMdX1Xf1n7rXZyxNjqjI0mXkTivxxCzz-TOLxsya7vxAcmEOgUfRjLERBwuaBcfA4kDub68qH98J9mPQU_TAdFFu9VLidQJNfGBbFCXITgS0H4hVgeL6Vn1ZNBTxuf361n1-eLD9flVvf50-fH8_bq2vIelpgYc9NIIZoCDM9DJoes6KpFqLSRF2wyNMM4Yx1sULUjODWWOaylxEF1zVr075m53ZkZnMSxJT2qb_KzTXkXt1d9K8Bs1xlvVU5C0bUvA6_uAFL_uMC9q9tniNOmAcZcVa1rKBROcF_TVP-hN3KXyLwdKcAGN7KBQ9EjZFHNOODxchoI6tKuO7arSlDq0q_bF8_LPVzw4ftVZAHYEcpHCiOn30f9P_QkvX7Jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384803960</pqid></control><display><type>article</type><title>Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ishii, Hiroki ; Saitoh, Masao ; Sakamoto, Kaname ; Sakamoto, Kei ; Saigusa, Daisuke ; Kasai, Hirotake ; Ashizawa, Kei ; Miyazawa, Keiji ; Takeda, Sen ; Masuyama, Keisuke ; Yoshimura, Kentaro</creator><creatorcontrib>Ishii, Hiroki ; Saitoh, Masao ; Sakamoto, Kaname ; Sakamoto, Kei ; Saigusa, Daisuke ; Kasai, Hirotake ; Ashizawa, Kei ; Miyazawa, Keiji ; Takeda, Sen ; Masuyama, Keisuke ; Yoshimura, Kentaro</creatorcontrib><description>Background
Several pro-oncogenic signals, including transforming growth factor beta (TGF-β) signalling from tumour microenvironment, generate intratumoural phenotypic heterogeneity and result in tumour progression and treatment failure. However, the precise diagnosis for tumour areas containing subclones with cytokine-induced malignant properties remains clinically challenging.
Methods
We established a rapid diagnostic system based on the combination of probe electrospray ionisation-mass spectrometry (PESI-MS) and machine learning without the aid of immunohistological and biochemical procedures to identify tumour areas with heterogeneous TGF-β signalling status in head and neck squamous cell carcinoma (HNSCC). A total of 240 and 90 mass spectra were obtained from TGF-β-unstimulated and -stimulated HNSCC cells, respectively, by PESI-MS and were used for the construction of a diagnostic system based on lipidome.
Results
This discriminant algorithm achieved 98.79% accuracy in discrimination of TGF-β1-stimulated cells from untreated cells. In clinical human HNSCC tissues, this approach achieved determination of tumour areas with activated TGF-β signalling as efficiently as a conventional histopathological assessment using phosphorylated-SMAD2 staining. Furthermore, several altered peaks on mass spectra were identified as phosphatidylcholine species in TGF-β-stimulated HNSCC cells.
Conclusions
This diagnostic system combined with PESI-MS and machine learning encourages us to clinically diagnose intratumoural phenotypic heterogeneity induced by TGF-β.</description><identifier>ISSN: 0007-0920</identifier><identifier>EISSN: 1532-1827</identifier><identifier>DOI: 10.1038/s41416-020-0732-y</identifier><identifier>PMID: 32020064</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/1665/3016 ; 692/308/575 ; 692/4028/546 ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Line, Tumor ; Diagnosis ; Drug Resistance ; Epidemiology ; Head & neck cancer ; Head and Neck Neoplasms - diagnosis ; Head and Neck Neoplasms - pathology ; Humans ; Learning algorithms ; Lecithin ; Lipidomics - methods ; Machine learning ; Machine Learning - standards ; Mass spectroscopy ; Medical diagnosis ; Molecular Medicine ; Oncology ; Phosphatidylcholine ; Signal Transduction ; Smad2 protein ; Squamous cell carcinoma ; Transforming Growth Factor beta - metabolism ; Transforming growth factor-b ; Transforming growth factor-b1 ; Tumor microenvironment ; Tumors</subject><ispartof>British journal of cancer, 2020-03, Vol.122 (7), p.995-1004</ispartof><rights>The Author(s), under exclusive licence to Cancer Research UK 2020</rights><rights>2020© The Author(s), under exclusive licence to Cancer Research UK 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-1b0d079b82b040db069f66619e1aa891ec3f38bdbbd45e850944b12d4a99ef863</citedby><cites>FETCH-LOGICAL-c470t-1b0d079b82b040db069f66619e1aa891ec3f38bdbbd45e850944b12d4a99ef863</cites><orcidid>0000-0003-1329-2180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109155/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7109155/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32020064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishii, Hiroki</creatorcontrib><creatorcontrib>Saitoh, Masao</creatorcontrib><creatorcontrib>Sakamoto, Kaname</creatorcontrib><creatorcontrib>Sakamoto, Kei</creatorcontrib><creatorcontrib>Saigusa, Daisuke</creatorcontrib><creatorcontrib>Kasai, Hirotake</creatorcontrib><creatorcontrib>Ashizawa, Kei</creatorcontrib><creatorcontrib>Miyazawa, Keiji</creatorcontrib><creatorcontrib>Takeda, Sen</creatorcontrib><creatorcontrib>Masuyama, Keisuke</creatorcontrib><creatorcontrib>Yoshimura, Kentaro</creatorcontrib><title>Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer</title><title>British journal of cancer</title><addtitle>Br J Cancer</addtitle><addtitle>Br J Cancer</addtitle><description>Background
Several pro-oncogenic signals, including transforming growth factor beta (TGF-β) signalling from tumour microenvironment, generate intratumoural phenotypic heterogeneity and result in tumour progression and treatment failure. However, the precise diagnosis for tumour areas containing subclones with cytokine-induced malignant properties remains clinically challenging.
Methods
We established a rapid diagnostic system based on the combination of probe electrospray ionisation-mass spectrometry (PESI-MS) and machine learning without the aid of immunohistological and biochemical procedures to identify tumour areas with heterogeneous TGF-β signalling status in head and neck squamous cell carcinoma (HNSCC). A total of 240 and 90 mass spectra were obtained from TGF-β-unstimulated and -stimulated HNSCC cells, respectively, by PESI-MS and were used for the construction of a diagnostic system based on lipidome.
Results
This discriminant algorithm achieved 98.79% accuracy in discrimination of TGF-β1-stimulated cells from untreated cells. In clinical human HNSCC tissues, this approach achieved determination of tumour areas with activated TGF-β signalling as efficiently as a conventional histopathological assessment using phosphorylated-SMAD2 staining. Furthermore, several altered peaks on mass spectra were identified as phosphatidylcholine species in TGF-β-stimulated HNSCC cells.
Conclusions
This diagnostic system combined with PESI-MS and machine learning encourages us to clinically diagnose intratumoural phenotypic heterogeneity induced by TGF-β.</description><subject>631/67/1665/3016</subject><subject>692/308/575</subject><subject>692/4028/546</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Line, Tumor</subject><subject>Diagnosis</subject><subject>Drug Resistance</subject><subject>Epidemiology</subject><subject>Head & neck cancer</subject><subject>Head and Neck Neoplasms - diagnosis</subject><subject>Head and Neck Neoplasms - pathology</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Lecithin</subject><subject>Lipidomics - methods</subject><subject>Machine learning</subject><subject>Machine Learning - standards</subject><subject>Mass spectroscopy</subject><subject>Medical diagnosis</subject><subject>Molecular Medicine</subject><subject>Oncology</subject><subject>Phosphatidylcholine</subject><subject>Signal Transduction</subject><subject>Smad2 protein</subject><subject>Squamous cell carcinoma</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transforming growth factor-b</subject><subject>Transforming growth factor-b1</subject><subject>Tumor microenvironment</subject><subject>Tumors</subject><issn>0007-0920</issn><issn>1532-1827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1DAUhSMEotPCA7BBltiwCVw7TmJvkFBFW6SR2JS15Z-bjEtiD3am1Wx4KB6EZ8KjKeVHYmVfne8c_5yqekHhDYVGvM2cctrVwKCGvmH1_lG1om3ZUMH6x9UKAPoaJIOT6jTnmzJKEP3T6qRhxQMdX1Xf1n7rXZyxNjqjI0mXkTivxxCzz-TOLxsya7vxAcmEOgUfRjLERBwuaBcfA4kDub68qH98J9mPQU_TAdFFu9VLidQJNfGBbFCXITgS0H4hVgeL6Vn1ZNBTxuf361n1-eLD9flVvf50-fH8_bq2vIelpgYc9NIIZoCDM9DJoes6KpFqLSRF2wyNMM4Yx1sULUjODWWOaylxEF1zVr075m53ZkZnMSxJT2qb_KzTXkXt1d9K8Bs1xlvVU5C0bUvA6_uAFL_uMC9q9tniNOmAcZcVa1rKBROcF_TVP-hN3KXyLwdKcAGN7KBQ9EjZFHNOODxchoI6tKuO7arSlDq0q_bF8_LPVzw4ftVZAHYEcpHCiOn30f9P_QkvX7Jg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ishii, Hiroki</creator><creator>Saitoh, Masao</creator><creator>Sakamoto, Kaname</creator><creator>Sakamoto, Kei</creator><creator>Saigusa, Daisuke</creator><creator>Kasai, Hirotake</creator><creator>Ashizawa, Kei</creator><creator>Miyazawa, Keiji</creator><creator>Takeda, Sen</creator><creator>Masuyama, Keisuke</creator><creator>Yoshimura, Kentaro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1329-2180</orcidid></search><sort><creationdate>20200301</creationdate><title>Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer</title><author>Ishii, Hiroki ; Saitoh, Masao ; Sakamoto, Kaname ; Sakamoto, Kei ; Saigusa, Daisuke ; Kasai, Hirotake ; Ashizawa, Kei ; Miyazawa, Keiji ; Takeda, Sen ; Masuyama, Keisuke ; Yoshimura, Kentaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-1b0d079b82b040db069f66619e1aa891ec3f38bdbbd45e850944b12d4a99ef863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/67/1665/3016</topic><topic>692/308/575</topic><topic>692/4028/546</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Line, Tumor</topic><topic>Diagnosis</topic><topic>Drug Resistance</topic><topic>Epidemiology</topic><topic>Head & neck cancer</topic><topic>Head and Neck Neoplasms - diagnosis</topic><topic>Head and Neck Neoplasms - pathology</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Lecithin</topic><topic>Lipidomics - methods</topic><topic>Machine learning</topic><topic>Machine Learning - standards</topic><topic>Mass spectroscopy</topic><topic>Medical diagnosis</topic><topic>Molecular Medicine</topic><topic>Oncology</topic><topic>Phosphatidylcholine</topic><topic>Signal Transduction</topic><topic>Smad2 protein</topic><topic>Squamous cell carcinoma</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transforming growth factor-b</topic><topic>Transforming growth factor-b1</topic><topic>Tumor microenvironment</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Hiroki</creatorcontrib><creatorcontrib>Saitoh, Masao</creatorcontrib><creatorcontrib>Sakamoto, Kaname</creatorcontrib><creatorcontrib>Sakamoto, Kei</creatorcontrib><creatorcontrib>Saigusa, Daisuke</creatorcontrib><creatorcontrib>Kasai, Hirotake</creatorcontrib><creatorcontrib>Ashizawa, Kei</creatorcontrib><creatorcontrib>Miyazawa, Keiji</creatorcontrib><creatorcontrib>Takeda, Sen</creatorcontrib><creatorcontrib>Masuyama, Keisuke</creatorcontrib><creatorcontrib>Yoshimura, Kentaro</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Hiroki</au><au>Saitoh, Masao</au><au>Sakamoto, Kaname</au><au>Sakamoto, Kei</au><au>Saigusa, Daisuke</au><au>Kasai, Hirotake</au><au>Ashizawa, Kei</au><au>Miyazawa, Keiji</au><au>Takeda, Sen</au><au>Masuyama, Keisuke</au><au>Yoshimura, Kentaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer</atitle><jtitle>British journal of cancer</jtitle><stitle>Br J Cancer</stitle><addtitle>Br J Cancer</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>122</volume><issue>7</issue><spage>995</spage><epage>1004</epage><pages>995-1004</pages><issn>0007-0920</issn><eissn>1532-1827</eissn><abstract>Background
Several pro-oncogenic signals, including transforming growth factor beta (TGF-β) signalling from tumour microenvironment, generate intratumoural phenotypic heterogeneity and result in tumour progression and treatment failure. However, the precise diagnosis for tumour areas containing subclones with cytokine-induced malignant properties remains clinically challenging.
Methods
We established a rapid diagnostic system based on the combination of probe electrospray ionisation-mass spectrometry (PESI-MS) and machine learning without the aid of immunohistological and biochemical procedures to identify tumour areas with heterogeneous TGF-β signalling status in head and neck squamous cell carcinoma (HNSCC). A total of 240 and 90 mass spectra were obtained from TGF-β-unstimulated and -stimulated HNSCC cells, respectively, by PESI-MS and were used for the construction of a diagnostic system based on lipidome.
Results
This discriminant algorithm achieved 98.79% accuracy in discrimination of TGF-β1-stimulated cells from untreated cells. In clinical human HNSCC tissues, this approach achieved determination of tumour areas with activated TGF-β signalling as efficiently as a conventional histopathological assessment using phosphorylated-SMAD2 staining. Furthermore, several altered peaks on mass spectra were identified as phosphatidylcholine species in TGF-β-stimulated HNSCC cells.
Conclusions
This diagnostic system combined with PESI-MS and machine learning encourages us to clinically diagnose intratumoural phenotypic heterogeneity induced by TGF-β.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32020064</pmid><doi>10.1038/s41416-020-0732-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1329-2180</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-0920 |
ispartof | British journal of cancer, 2020-03, Vol.122 (7), p.995-1004 |
issn | 0007-0920 1532-1827 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7109155 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/67/1665/3016 692/308/575 692/4028/546 Biomedical and Life Sciences Biomedicine Cancer Research Cell Line, Tumor Diagnosis Drug Resistance Epidemiology Head & neck cancer Head and Neck Neoplasms - diagnosis Head and Neck Neoplasms - pathology Humans Learning algorithms Lecithin Lipidomics - methods Machine learning Machine Learning - standards Mass spectroscopy Medical diagnosis Molecular Medicine Oncology Phosphatidylcholine Signal Transduction Smad2 protein Squamous cell carcinoma Transforming Growth Factor beta - metabolism Transforming growth factor-b Transforming growth factor-b1 Tumor microenvironment Tumors |
title | Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipidome-based%20rapid%20diagnosis%20with%20machine%20learning%20for%20detection%20of%20TGF-%CE%B2%20signalling%20activated%20area%20in%20head%20and%20neck%20cancer&rft.jtitle=British%20journal%20of%20cancer&rft.au=Ishii,%20Hiroki&rft.date=2020-03-01&rft.volume=122&rft.issue=7&rft.spage=995&rft.epage=1004&rft.pages=995-1004&rft.issn=0007-0920&rft.eissn=1532-1827&rft_id=info:doi/10.1038/s41416-020-0732-y&rft_dat=%3Cproquest_pubme%3E2351482844%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384803960&rft_id=info:pmid/32020064&rfr_iscdi=true |