Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase

Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime–based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-03, Vol.295 (13), p.4079-4092
Hauptverfasser: Gorecki, Lukas, Gerlits, Oksana, Kong, Xiaotian, Cheng, Xiaolin, Blumenthal, Donald K., Taylor, Palmer, Ballatore, Carlo, Kovalevsky, Andrey, Radić, Zoran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4092
container_issue 13
container_start_page 4079
container_title The Journal of biological chemistry
container_volume 295
creator Gorecki, Lukas
Gerlits, Oksana
Kong, Xiaotian
Cheng, Xiaolin
Blumenthal, Donald K.
Taylor, Palmer
Ballatore, Carlo
Kovalevsky, Andrey
Radić, Zoran
description Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime–based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation. Improvements of OP antidotes need to include much better access of AChE reactivators to the CNS and optimized orientation of the antidotes’ nucleophile within the AChE active-center gorge. On the basis of X-ray structures of a CNS-penetrating reactivator, monoxime RS194B, reversibly bound to native and venomous agent X (VX)–inhibited human AChE, here we created seven uncharged acetamido bis-oximes as candidate antidotes. Both oxime groups in these bis-oximes were attached to the same central, saturated heterocyclic core. Diverse protonation of the heterocyclic amines and oxime groups of the bis-oximes resulted in equilibration among up to 16 distinct ionization forms, including uncharged forms capable of diffusing into the CNS and multiple zwitterionic forms optimal for reactivation reactions. Conformationally diverse zwitterions that could act as structural antidote variants significantly improved in vitro reactivation of diverse OP-human AChE conjugates. Oxime group reorientation of one of the bis-oximes, forcing it to point into the active center for reactivation, was confirmed by X-ray structural analysis. Our findings provide detailed structure-activity properties of several CNS-directed, uncharged aliphatic bis-oximes holding promise for use as protonation-dependent, conformationally adaptive, “smart” accelerated antidotes against OP toxicity.
doi_str_mv 10.1074/jbc.RA119.012400
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7105318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817487394</els_id><sourcerecordid>S0021925817487394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6235ce7a97b98a63be77b9d9fc7b46b6f7928127739b8487033e787be6b8516c3</originalsourceid><addsrcrecordid>eNqNkc-KFDEQhxtR3HH17kmCV6fHpNOdpD0Iy-A_WBAWBW8hSVdPZ-lJhiQzOrd9BB9AX26fxMz0OuhBMJcU5PtVpfiK4inBC4J5_fJam8XVBSHtApOqxvheMSNY0JI25Mv9YoZxRcq2asRZ8SjGa5xP3ZKHxRmtMGkFa2bF9yuVrHdqRB1Eu3JzFPcuDbmOc6Rch2Cnxu2RQb5HW2cGFVbQzdHtzY-4ViHd3vxE2sbSf7NryJFkO58gHmgfVsr5zeDjZlAJSusGq22CDg3btXJIGUj70Qx-tA5igqAiPC4e9GqM8OTuPi8-v33zafm-vPz47sPy4rI0Na9TySraGOCq5boVilENPFdd2xuua6ZZz9tKkIpz2mpRC44pBS64BqZFQ5ih58Xrqe9mq9fQGXApqFFugs1L7aVXVv794uwgV34nOcENJSI3eD418DFZGU3eywzGOwcmScIIY5hkCE-QCT7GAP1pAMHyoFBmhfKoUE4Kc-TZnx87BX47y8CLCfgK2vd5MDgDJyw7bipa11Vz0F1lWvw_vbTpqHrpty7l6KspCtnDzkKQd_HOhsOSnbf_XuMXPrXSGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gorecki, Lukas ; Gerlits, Oksana ; Kong, Xiaotian ; Cheng, Xiaolin ; Blumenthal, Donald K. ; Taylor, Palmer ; Ballatore, Carlo ; Kovalevsky, Andrey ; Radić, Zoran</creator><creatorcontrib>Gorecki, Lukas ; Gerlits, Oksana ; Kong, Xiaotian ; Cheng, Xiaolin ; Blumenthal, Donald K. ; Taylor, Palmer ; Ballatore, Carlo ; Kovalevsky, Andrey ; Radić, Zoran ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime–based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation. Improvements of OP antidotes need to include much better access of AChE reactivators to the CNS and optimized orientation of the antidotes’ nucleophile within the AChE active-center gorge. On the basis of X-ray structures of a CNS-penetrating reactivator, monoxime RS194B, reversibly bound to native and venomous agent X (VX)–inhibited human AChE, here we created seven uncharged acetamido bis-oximes as candidate antidotes. Both oxime groups in these bis-oximes were attached to the same central, saturated heterocyclic core. Diverse protonation of the heterocyclic amines and oxime groups of the bis-oximes resulted in equilibration among up to 16 distinct ionization forms, including uncharged forms capable of diffusing into the CNS and multiple zwitterionic forms optimal for reactivation reactions. Conformationally diverse zwitterions that could act as structural antidote variants significantly improved in vitro reactivation of diverse OP-human AChE conjugates. Oxime group reorientation of one of the bis-oximes, forcing it to point into the active center for reactivation, was confirmed by X-ray structural analysis. Our findings provide detailed structure-activity properties of several CNS-directed, uncharged aliphatic bis-oximes holding promise for use as protonation-dependent, conformationally adaptive, “smart” accelerated antidotes against OP toxicity.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA119.012400</identifier><identifier>PMID: 32019865</identifier><language>eng</language><publisher>ROCKVILLE: Elsevier Inc</publisher><subject>Acetamides - chemistry ; Acetamides - therapeutic use ; acetylcholinesterase (AChE) ; Acetylcholinesterase - chemistry ; aliphatic bis-oxime ; Antidotes - chemical synthesis ; Antidotes - chemistry ; Antidotes - therapeutic use ; Biochemistry &amp; Molecular Biology ; Central Nervous System - drug effects ; Central Nervous System - enzymology ; Cholinesterase Inhibitors - chemical synthesis ; Cholinesterase Inhibitors - chemistry ; Cholinesterase Inhibitors - therapeutic use ; Cholinesterase Reactivators - chemical synthesis ; Cholinesterase Reactivators - chemistry ; Cholinesterase Reactivators - therapeutic use ; crystal structure ; Crystallography, X-Ray ; drug design ; enzyme structure ; Enzymology ; Humans ; Kinetics ; Life Sciences &amp; Biomedicine ; molecular modeling ; organophosphate intoxication ; Organophosphates - chemistry ; Organophosphates - toxicity ; Organophosphorus Compounds - chemistry ; Organophosphorus Compounds - toxicity ; oxime reactivation ; Oximes - chemical synthesis ; Oximes - chemistry ; Oximes - pharmacology ; Oximes - therapeutic use ; Protein Conformation - drug effects ; Science &amp; Technology ; Structure-Activity Relationship ; structure-function ; uncharged oxime antidote</subject><ispartof>The Journal of biological chemistry, 2020-03, Vol.295 (13), p.4079-4092</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000523442500002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-6235ce7a97b98a63be77b9d9fc7b46b6f7928127739b8487033e787be6b8516c3</citedby><cites>FETCH-LOGICAL-c474t-6235ce7a97b98a63be77b9d9fc7b46b6f7928127739b8487033e787be6b8516c3</cites><orcidid>0000-0003-4459-9142 ; 0000-0003-0806-3869 ; 0000-0002-3081-131X ; 0000-0002-2718-3850 ; 0000-0002-8614-1167 ; 0000-0002-7396-3225 ; 0000-0002-4791-6556 ; 0000000286141167 ; 0000000308063869 ; 000000023081131X ; 0000000227183850 ; 0000000344599142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105318/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105318/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32019865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1616601$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorecki, Lukas</creatorcontrib><creatorcontrib>Gerlits, Oksana</creatorcontrib><creatorcontrib>Kong, Xiaotian</creatorcontrib><creatorcontrib>Cheng, Xiaolin</creatorcontrib><creatorcontrib>Blumenthal, Donald K.</creatorcontrib><creatorcontrib>Taylor, Palmer</creatorcontrib><creatorcontrib>Ballatore, Carlo</creatorcontrib><creatorcontrib>Kovalevsky, Andrey</creatorcontrib><creatorcontrib>Radić, Zoran</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase</title><title>The Journal of biological chemistry</title><addtitle>J BIOL CHEM</addtitle><addtitle>J Biol Chem</addtitle><description>Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime–based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation. Improvements of OP antidotes need to include much better access of AChE reactivators to the CNS and optimized orientation of the antidotes’ nucleophile within the AChE active-center gorge. On the basis of X-ray structures of a CNS-penetrating reactivator, monoxime RS194B, reversibly bound to native and venomous agent X (VX)–inhibited human AChE, here we created seven uncharged acetamido bis-oximes as candidate antidotes. Both oxime groups in these bis-oximes were attached to the same central, saturated heterocyclic core. Diverse protonation of the heterocyclic amines and oxime groups of the bis-oximes resulted in equilibration among up to 16 distinct ionization forms, including uncharged forms capable of diffusing into the CNS and multiple zwitterionic forms optimal for reactivation reactions. Conformationally diverse zwitterions that could act as structural antidote variants significantly improved in vitro reactivation of diverse OP-human AChE conjugates. Oxime group reorientation of one of the bis-oximes, forcing it to point into the active center for reactivation, was confirmed by X-ray structural analysis. Our findings provide detailed structure-activity properties of several CNS-directed, uncharged aliphatic bis-oximes holding promise for use as protonation-dependent, conformationally adaptive, “smart” accelerated antidotes against OP toxicity.</description><subject>Acetamides - chemistry</subject><subject>Acetamides - therapeutic use</subject><subject>acetylcholinesterase (AChE)</subject><subject>Acetylcholinesterase - chemistry</subject><subject>aliphatic bis-oxime</subject><subject>Antidotes - chemical synthesis</subject><subject>Antidotes - chemistry</subject><subject>Antidotes - therapeutic use</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Central Nervous System - drug effects</subject><subject>Central Nervous System - enzymology</subject><subject>Cholinesterase Inhibitors - chemical synthesis</subject><subject>Cholinesterase Inhibitors - chemistry</subject><subject>Cholinesterase Inhibitors - therapeutic use</subject><subject>Cholinesterase Reactivators - chemical synthesis</subject><subject>Cholinesterase Reactivators - chemistry</subject><subject>Cholinesterase Reactivators - therapeutic use</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>drug design</subject><subject>enzyme structure</subject><subject>Enzymology</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>molecular modeling</subject><subject>organophosphate intoxication</subject><subject>Organophosphates - chemistry</subject><subject>Organophosphates - toxicity</subject><subject>Organophosphorus Compounds - chemistry</subject><subject>Organophosphorus Compounds - toxicity</subject><subject>oxime reactivation</subject><subject>Oximes - chemical synthesis</subject><subject>Oximes - chemistry</subject><subject>Oximes - pharmacology</subject><subject>Oximes - therapeutic use</subject><subject>Protein Conformation - drug effects</subject><subject>Science &amp; Technology</subject><subject>Structure-Activity Relationship</subject><subject>structure-function</subject><subject>uncharged oxime antidote</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc-KFDEQhxtR3HH17kmCV6fHpNOdpD0Iy-A_WBAWBW8hSVdPZ-lJhiQzOrd9BB9AX26fxMz0OuhBMJcU5PtVpfiK4inBC4J5_fJam8XVBSHtApOqxvheMSNY0JI25Mv9YoZxRcq2asRZ8SjGa5xP3ZKHxRmtMGkFa2bF9yuVrHdqRB1Eu3JzFPcuDbmOc6Rch2Cnxu2RQb5HW2cGFVbQzdHtzY-4ViHd3vxE2sbSf7NryJFkO58gHmgfVsr5zeDjZlAJSusGq22CDg3btXJIGUj70Qx-tA5igqAiPC4e9GqM8OTuPi8-v33zafm-vPz47sPy4rI0Na9TySraGOCq5boVilENPFdd2xuua6ZZz9tKkIpz2mpRC44pBS64BqZFQ5ih58Xrqe9mq9fQGXApqFFugs1L7aVXVv794uwgV34nOcENJSI3eD418DFZGU3eywzGOwcmScIIY5hkCE-QCT7GAP1pAMHyoFBmhfKoUE4Kc-TZnx87BX47y8CLCfgK2vd5MDgDJyw7bipa11Vz0F1lWvw_vbTpqHrpty7l6KspCtnDzkKQd_HOhsOSnbf_XuMXPrXSGA</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Gorecki, Lukas</creator><creator>Gerlits, Oksana</creator><creator>Kong, Xiaotian</creator><creator>Cheng, Xiaolin</creator><creator>Blumenthal, Donald K.</creator><creator>Taylor, Palmer</creator><creator>Ballatore, Carlo</creator><creator>Kovalevsky, Andrey</creator><creator>Radić, Zoran</creator><general>Elsevier Inc</general><general>Amer Soc Biochemistry Molecular Biology Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4459-9142</orcidid><orcidid>https://orcid.org/0000-0003-0806-3869</orcidid><orcidid>https://orcid.org/0000-0002-3081-131X</orcidid><orcidid>https://orcid.org/0000-0002-2718-3850</orcidid><orcidid>https://orcid.org/0000-0002-8614-1167</orcidid><orcidid>https://orcid.org/0000-0002-7396-3225</orcidid><orcidid>https://orcid.org/0000-0002-4791-6556</orcidid><orcidid>https://orcid.org/0000000286141167</orcidid><orcidid>https://orcid.org/0000000308063869</orcidid><orcidid>https://orcid.org/000000023081131X</orcidid><orcidid>https://orcid.org/0000000227183850</orcidid><orcidid>https://orcid.org/0000000344599142</orcidid></search><sort><creationdate>20200327</creationdate><title>Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase</title><author>Gorecki, Lukas ; Gerlits, Oksana ; Kong, Xiaotian ; Cheng, Xiaolin ; Blumenthal, Donald K. ; Taylor, Palmer ; Ballatore, Carlo ; Kovalevsky, Andrey ; Radić, Zoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6235ce7a97b98a63be77b9d9fc7b46b6f7928127739b8487033e787be6b8516c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetamides - chemistry</topic><topic>Acetamides - therapeutic use</topic><topic>acetylcholinesterase (AChE)</topic><topic>Acetylcholinesterase - chemistry</topic><topic>aliphatic bis-oxime</topic><topic>Antidotes - chemical synthesis</topic><topic>Antidotes - chemistry</topic><topic>Antidotes - therapeutic use</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Central Nervous System - drug effects</topic><topic>Central Nervous System - enzymology</topic><topic>Cholinesterase Inhibitors - chemical synthesis</topic><topic>Cholinesterase Inhibitors - chemistry</topic><topic>Cholinesterase Inhibitors - therapeutic use</topic><topic>Cholinesterase Reactivators - chemical synthesis</topic><topic>Cholinesterase Reactivators - chemistry</topic><topic>Cholinesterase Reactivators - therapeutic use</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>drug design</topic><topic>enzyme structure</topic><topic>Enzymology</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>molecular modeling</topic><topic>organophosphate intoxication</topic><topic>Organophosphates - chemistry</topic><topic>Organophosphates - toxicity</topic><topic>Organophosphorus Compounds - chemistry</topic><topic>Organophosphorus Compounds - toxicity</topic><topic>oxime reactivation</topic><topic>Oximes - chemical synthesis</topic><topic>Oximes - chemistry</topic><topic>Oximes - pharmacology</topic><topic>Oximes - therapeutic use</topic><topic>Protein Conformation - drug effects</topic><topic>Science &amp; Technology</topic><topic>Structure-Activity Relationship</topic><topic>structure-function</topic><topic>uncharged oxime antidote</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorecki, Lukas</creatorcontrib><creatorcontrib>Gerlits, Oksana</creatorcontrib><creatorcontrib>Kong, Xiaotian</creatorcontrib><creatorcontrib>Cheng, Xiaolin</creatorcontrib><creatorcontrib>Blumenthal, Donald K.</creatorcontrib><creatorcontrib>Taylor, Palmer</creatorcontrib><creatorcontrib>Ballatore, Carlo</creatorcontrib><creatorcontrib>Kovalevsky, Andrey</creatorcontrib><creatorcontrib>Radić, Zoran</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorecki, Lukas</au><au>Gerlits, Oksana</au><au>Kong, Xiaotian</au><au>Cheng, Xiaolin</au><au>Blumenthal, Donald K.</au><au>Taylor, Palmer</au><au>Ballatore, Carlo</au><au>Kovalevsky, Andrey</au><au>Radić, Zoran</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase</atitle><jtitle>The Journal of biological chemistry</jtitle><stitle>J BIOL CHEM</stitle><addtitle>J Biol Chem</addtitle><date>2020-03-27</date><risdate>2020</risdate><volume>295</volume><issue>13</issue><spage>4079</spage><epage>4092</epage><pages>4079-4092</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime–based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation. Improvements of OP antidotes need to include much better access of AChE reactivators to the CNS and optimized orientation of the antidotes’ nucleophile within the AChE active-center gorge. On the basis of X-ray structures of a CNS-penetrating reactivator, monoxime RS194B, reversibly bound to native and venomous agent X (VX)–inhibited human AChE, here we created seven uncharged acetamido bis-oximes as candidate antidotes. Both oxime groups in these bis-oximes were attached to the same central, saturated heterocyclic core. Diverse protonation of the heterocyclic amines and oxime groups of the bis-oximes resulted in equilibration among up to 16 distinct ionization forms, including uncharged forms capable of diffusing into the CNS and multiple zwitterionic forms optimal for reactivation reactions. Conformationally diverse zwitterions that could act as structural antidote variants significantly improved in vitro reactivation of diverse OP-human AChE conjugates. Oxime group reorientation of one of the bis-oximes, forcing it to point into the active center for reactivation, was confirmed by X-ray structural analysis. Our findings provide detailed structure-activity properties of several CNS-directed, uncharged aliphatic bis-oximes holding promise for use as protonation-dependent, conformationally adaptive, “smart” accelerated antidotes against OP toxicity.</abstract><cop>ROCKVILLE</cop><pub>Elsevier Inc</pub><pmid>32019865</pmid><doi>10.1074/jbc.RA119.012400</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4459-9142</orcidid><orcidid>https://orcid.org/0000-0003-0806-3869</orcidid><orcidid>https://orcid.org/0000-0002-3081-131X</orcidid><orcidid>https://orcid.org/0000-0002-2718-3850</orcidid><orcidid>https://orcid.org/0000-0002-8614-1167</orcidid><orcidid>https://orcid.org/0000-0002-7396-3225</orcidid><orcidid>https://orcid.org/0000-0002-4791-6556</orcidid><orcidid>https://orcid.org/0000000286141167</orcidid><orcidid>https://orcid.org/0000000308063869</orcidid><orcidid>https://orcid.org/000000023081131X</orcidid><orcidid>https://orcid.org/0000000227183850</orcidid><orcidid>https://orcid.org/0000000344599142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-03, Vol.295 (13), p.4079-4092
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7105318
source MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acetamides - chemistry
Acetamides - therapeutic use
acetylcholinesterase (AChE)
Acetylcholinesterase - chemistry
aliphatic bis-oxime
Antidotes - chemical synthesis
Antidotes - chemistry
Antidotes - therapeutic use
Biochemistry & Molecular Biology
Central Nervous System - drug effects
Central Nervous System - enzymology
Cholinesterase Inhibitors - chemical synthesis
Cholinesterase Inhibitors - chemistry
Cholinesterase Inhibitors - therapeutic use
Cholinesterase Reactivators - chemical synthesis
Cholinesterase Reactivators - chemistry
Cholinesterase Reactivators - therapeutic use
crystal structure
Crystallography, X-Ray
drug design
enzyme structure
Enzymology
Humans
Kinetics
Life Sciences & Biomedicine
molecular modeling
organophosphate intoxication
Organophosphates - chemistry
Organophosphates - toxicity
Organophosphorus Compounds - chemistry
Organophosphorus Compounds - toxicity
oxime reactivation
Oximes - chemical synthesis
Oximes - chemistry
Oximes - pharmacology
Oximes - therapeutic use
Protein Conformation - drug effects
Science & Technology
Structure-Activity Relationship
structure-function
uncharged oxime antidote
title Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design,%20synthesis,%20and%20evaluation%20of%20uncharged,%20%E2%80%9Csmart%E2%80%9D%20bis-oxime%20antidotes%20of%20organophosphate-inhibited%20human%20acetylcholinesterase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Gorecki,%20Lukas&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-03-27&rft.volume=295&rft.issue=13&rft.spage=4079&rft.epage=4092&rft.pages=4079-4092&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA119.012400&rft_dat=%3Celsevier_pubme%3ES0021925817487394%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32019865&rft_els_id=S0021925817487394&rfr_iscdi=true