Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices
Biomedical applications increasingly require fully characterized new nanomaterials. There is strong evidence showing that nanomaterials not only interact with cells passively but also actively, mediating essential molecular processes for the regulation of cellular functions, but we are only starting...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2020-03, Vol.31 (13), p.132002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 132002 |
container_title | Nanotechnology |
container_volume | 31 |
creator | Villanueva-Flores, Francisca Castro-Lugo, Andrés Ramírez, Octavio T Palomares, Laura A |
description | Biomedical applications increasingly require fully characterized new nanomaterials. There is strong evidence showing that nanomaterials not only interact with cells passively but also actively, mediating essential molecular processes for the regulation of cellular functions, but we are only starting to understand the mechanisms of those interactions. Systematic studies about cell behavior as a response to specific nanoparticle properties are scarce in the literature even when they are necessary for the rational design of medical nanodevices. Information in the literature shows that the physicochemical properties determine the bioactivity, biocompatibility, and safety of nanomaterials. The information available regarding the interaction and responses of cells to nanomaterials has not been analyzed and discussed in a single document. Hence, in this review, we present the latest advances about cellular responses to nanomaterials and integrate the available information into concrete considerations for the development of innovative, efficient, specific and, more importantly, safe biomedical nanodevices. We focus on how physicochemical nanoparticle properties (size, chemical surface, shape, charge, and topography) influence cell behavior in a first attempt to provide a practical guide for designing medical nanodevices, avoiding common experimental omissions that may lead to data misinterpretation. Finally, we emphasize the importance of the systematic study of nano-bio interactions to acquire sufficient reproducible information that allows accurate control of cell behavior based on tuning of nanomaterial properties. This information is useful to guide the design of specific nanodevices and nanomaterials to elicit desired cell responses, like targeting, drug delivery, cell attachment, differentiation, etc, or to avoid undesired side effects. |
doi_str_mv | 10.1088/1361-6528/ab5bc8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7105107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2403132584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-f6e4639d45ce370655c4015afb09a0faebce16303ad279fd303b05e983d163fa3</originalsourceid><addsrcrecordid>eNpVkUtLBDEQhIMouj7uniTgebQzSebhQRDxBYIXPYeeJLMbmU00mVX892ZYXfSUUKmq7vARcszgjEHTnDNesaKSZXOOnex0s0VmG2mbzKCVdSFEI_bIfkqvAIw1Jdsle5zVNdSimpHFizc2phG9cX5OtR2G1YCROj_aiHp0wSf66cYF9ejDErPqcEgXdAyfGE2iSCNOLhyoscnNPQ09XVrjdFamjLEfTtt0SHb6HLRHP-cBebm9eb6-Lx6f7h6urx4LLSo2Fn1lRcVbI6S2vIZKSi2ASew7aBF6tJ22rOLA0ZR125t860DatuEmyz3yA3K57n1bdXkNbf0YcVBv0S0xfqmATv1_8W6h5uFD1QwkgzoXnP4UxPC-smlUr2EV8_-SKgVwxkvZiOyCtUvHkFK0_WYCAzWxURMINYFQazY5cvJ3s03gFwb_BrjDjiU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403132584</pqid></control><display><type>article</type><title>Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Villanueva-Flores, Francisca ; Castro-Lugo, Andrés ; Ramírez, Octavio T ; Palomares, Laura A</creator><creatorcontrib>Villanueva-Flores, Francisca ; Castro-Lugo, Andrés ; Ramírez, Octavio T ; Palomares, Laura A</creatorcontrib><description>Biomedical applications increasingly require fully characterized new nanomaterials. There is strong evidence showing that nanomaterials not only interact with cells passively but also actively, mediating essential molecular processes for the regulation of cellular functions, but we are only starting to understand the mechanisms of those interactions. Systematic studies about cell behavior as a response to specific nanoparticle properties are scarce in the literature even when they are necessary for the rational design of medical nanodevices. Information in the literature shows that the physicochemical properties determine the bioactivity, biocompatibility, and safety of nanomaterials. The information available regarding the interaction and responses of cells to nanomaterials has not been analyzed and discussed in a single document. Hence, in this review, we present the latest advances about cellular responses to nanomaterials and integrate the available information into concrete considerations for the development of innovative, efficient, specific and, more importantly, safe biomedical nanodevices. We focus on how physicochemical nanoparticle properties (size, chemical surface, shape, charge, and topography) influence cell behavior in a first attempt to provide a practical guide for designing medical nanodevices, avoiding common experimental omissions that may lead to data misinterpretation. Finally, we emphasize the importance of the systematic study of nano-bio interactions to acquire sufficient reproducible information that allows accurate control of cell behavior based on tuning of nanomaterial properties. This information is useful to guide the design of specific nanodevices and nanomaterials to elicit desired cell responses, like targeting, drug delivery, cell attachment, differentiation, etc, or to avoid undesired side effects.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>EISSN: 0957-4484</identifier><identifier>DOI: 10.1088/1361-6528/ab5bc8</identifier><identifier>PMID: 31770746</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Topical Review</subject><ispartof>Nanotechnology, 2020-03, Vol.31 (13), p.132002</ispartof><rights>2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://ioppublishing.org/news/coronavirus-articles-free-to-access-content-from-iop-publishing</rights><rights>2020 IOP Publishing Ltd 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-f6e4639d45ce370655c4015afb09a0faebce16303ad279fd303b05e983d163fa3</citedby><cites>FETCH-LOGICAL-c461t-f6e4639d45ce370655c4015afb09a0faebce16303ad279fd303b05e983d163fa3</cites><orcidid>0000-0002-2811-8102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31770746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villanueva-Flores, Francisca</creatorcontrib><creatorcontrib>Castro-Lugo, Andrés</creatorcontrib><creatorcontrib>Ramírez, Octavio T</creatorcontrib><creatorcontrib>Palomares, Laura A</creatorcontrib><title>Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices</title><title>Nanotechnology</title><addtitle>Nanotechnology</addtitle><description>Biomedical applications increasingly require fully characterized new nanomaterials. There is strong evidence showing that nanomaterials not only interact with cells passively but also actively, mediating essential molecular processes for the regulation of cellular functions, but we are only starting to understand the mechanisms of those interactions. Systematic studies about cell behavior as a response to specific nanoparticle properties are scarce in the literature even when they are necessary for the rational design of medical nanodevices. Information in the literature shows that the physicochemical properties determine the bioactivity, biocompatibility, and safety of nanomaterials. The information available regarding the interaction and responses of cells to nanomaterials has not been analyzed and discussed in a single document. Hence, in this review, we present the latest advances about cellular responses to nanomaterials and integrate the available information into concrete considerations for the development of innovative, efficient, specific and, more importantly, safe biomedical nanodevices. We focus on how physicochemical nanoparticle properties (size, chemical surface, shape, charge, and topography) influence cell behavior in a first attempt to provide a practical guide for designing medical nanodevices, avoiding common experimental omissions that may lead to data misinterpretation. Finally, we emphasize the importance of the systematic study of nano-bio interactions to acquire sufficient reproducible information that allows accurate control of cell behavior based on tuning of nanomaterial properties. This information is useful to guide the design of specific nanodevices and nanomaterials to elicit desired cell responses, like targeting, drug delivery, cell attachment, differentiation, etc, or to avoid undesired side effects.</description><subject>Topical Review</subject><issn>0957-4484</issn><issn>1361-6528</issn><issn>0957-4484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkUtLBDEQhIMouj7uniTgebQzSebhQRDxBYIXPYeeJLMbmU00mVX892ZYXfSUUKmq7vARcszgjEHTnDNesaKSZXOOnex0s0VmG2mbzKCVdSFEI_bIfkqvAIw1Jdsle5zVNdSimpHFizc2phG9cX5OtR2G1YCROj_aiHp0wSf66cYF9ejDErPqcEgXdAyfGE2iSCNOLhyoscnNPQ09XVrjdFamjLEfTtt0SHb6HLRHP-cBebm9eb6-Lx6f7h6urx4LLSo2Fn1lRcVbI6S2vIZKSi2ASew7aBF6tJ22rOLA0ZR125t860DatuEmyz3yA3K57n1bdXkNbf0YcVBv0S0xfqmATv1_8W6h5uFD1QwkgzoXnP4UxPC-smlUr2EV8_-SKgVwxkvZiOyCtUvHkFK0_WYCAzWxURMINYFQazY5cvJ3s03gFwb_BrjDjiU</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>Villanueva-Flores, Francisca</creator><creator>Castro-Lugo, Andrés</creator><creator>Ramírez, Octavio T</creator><creator>Palomares, Laura A</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2811-8102</orcidid></search><sort><creationdate>20200327</creationdate><title>Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices</title><author>Villanueva-Flores, Francisca ; Castro-Lugo, Andrés ; Ramírez, Octavio T ; Palomares, Laura A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-f6e4639d45ce370655c4015afb09a0faebce16303ad279fd303b05e983d163fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Topical Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villanueva-Flores, Francisca</creatorcontrib><creatorcontrib>Castro-Lugo, Andrés</creatorcontrib><creatorcontrib>Ramírez, Octavio T</creatorcontrib><creatorcontrib>Palomares, Laura A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villanueva-Flores, Francisca</au><au>Castro-Lugo, Andrés</au><au>Ramírez, Octavio T</au><au>Palomares, Laura A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices</atitle><jtitle>Nanotechnology</jtitle><addtitle>Nanotechnology</addtitle><date>2020-03-27</date><risdate>2020</risdate><volume>31</volume><issue>13</issue><spage>132002</spage><pages>132002-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><eissn>0957-4484</eissn><abstract>Biomedical applications increasingly require fully characterized new nanomaterials. There is strong evidence showing that nanomaterials not only interact with cells passively but also actively, mediating essential molecular processes for the regulation of cellular functions, but we are only starting to understand the mechanisms of those interactions. Systematic studies about cell behavior as a response to specific nanoparticle properties are scarce in the literature even when they are necessary for the rational design of medical nanodevices. Information in the literature shows that the physicochemical properties determine the bioactivity, biocompatibility, and safety of nanomaterials. The information available regarding the interaction and responses of cells to nanomaterials has not been analyzed and discussed in a single document. Hence, in this review, we present the latest advances about cellular responses to nanomaterials and integrate the available information into concrete considerations for the development of innovative, efficient, specific and, more importantly, safe biomedical nanodevices. We focus on how physicochemical nanoparticle properties (size, chemical surface, shape, charge, and topography) influence cell behavior in a first attempt to provide a practical guide for designing medical nanodevices, avoiding common experimental omissions that may lead to data misinterpretation. Finally, we emphasize the importance of the systematic study of nano-bio interactions to acquire sufficient reproducible information that allows accurate control of cell behavior based on tuning of nanomaterial properties. This information is useful to guide the design of specific nanodevices and nanomaterials to elicit desired cell responses, like targeting, drug delivery, cell attachment, differentiation, etc, or to avoid undesired side effects.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31770746</pmid><doi>10.1088/1361-6528/ab5bc8</doi><orcidid>https://orcid.org/0000-0002-2811-8102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2020-03, Vol.31 (13), p.132002 |
issn | 0957-4484 1361-6528 0957-4484 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7105107 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Topical Review |
title | Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20cellular%20interactions%20with%20nanomaterials:%20towards%20a%20rational%20design%20of%20medical%20nanodevices&rft.jtitle=Nanotechnology&rft.au=Villanueva-Flores,%20Francisca&rft.date=2020-03-27&rft.volume=31&rft.issue=13&rft.spage=132002&rft.pages=132002-&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/1361-6528/ab5bc8&rft_dat=%3Cproquest_pubme%3E2403132584%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403132584&rft_id=info:pmid/31770746&rfr_iscdi=true |