DBC1, p300, HDAC3, and Siah1 coordinately regulate ELL stability and function for expression of its target genes

Among all of the Super Elongation Complex (SEC) components, ELL1 (also known as ELL) is the only bona fide elongation factor that directly stimulates transcription elongation by RNA polymerase II. However, the mechanism(s) of functional regulation of ELL1 (referred to as ELL hereafter), through its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (12), p.6509-6520
Hauptverfasser: Basu, Subham, Barad, Mahesh, Yadav, Dipika, Nandy, Arijit, Mukherjee, Bidisha, Sarkar, Jit, Chakrabarti, Partha, Mukhopadhyay, Satinath, Biswas, Debabrata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6520
container_issue 12
container_start_page 6509
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Basu, Subham
Barad, Mahesh
Yadav, Dipika
Nandy, Arijit
Mukherjee, Bidisha
Sarkar, Jit
Chakrabarti, Partha
Mukhopadhyay, Satinath
Biswas, Debabrata
description Among all of the Super Elongation Complex (SEC) components, ELL1 (also known as ELL) is the only bona fide elongation factor that directly stimulates transcription elongation by RNA polymerase II. However, the mechanism(s) of functional regulation of ELL1 (referred to as ELL hereafter), through its stabilization, is completely unknown. Here, we report a function of human DBC1 in regulating ELL stability involving HDAC3, p300, and Siah1. Mechanistically, we show that p300-mediated site-specific acetylation increases, whereas HDAC3-mediated deacetylation decreases, ELL stability through polyubiquitylation by the E3 ubiquitin ligase Siah1. DBC1 competes with HDAC3 for the same binding sites on ELL and thus increases its acetylation and stability. Knockdown of DBC1 reduces ELL levels and expression of a significant number of genes, including those involved in glucose metabolism. Consistently, Type 2 diabetes patient-derived peripheral blood mononuclear cells show reduced expression of DBC1 and ELL and associated key target genes required for glucose homeostasis. Thus, we describe a pathway of regulating stability and functions of key elongation factor ELL for expression of diverse sets of genes, including ones that are linked to Type 2 diabetes pathogenesis.
doi_str_mv 10.1073/pnas.1912375117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929567</jstor_id><sourcerecordid>26929567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-84784406f035eb5d3fbebc1e4eccd4c3743fc3ef508606db54705fb303efc7f33</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhlcIREPhzAlkiQuHpB1_rXcvlUpaKFIkDsDZ8nrt1NHGXmwvIv8eLynh4-Sx55nXM_NW1UsMFxgEvRy9She4xYQKjrF4VC0wtHhVsxYeVwsAIlYNI-ysepbSDgBa3sDT6owSzAkmzaIab96t8RKNFGCJ7m6u13SJlO_RZ6fuMdIhxN55lc1wQNFsp6GE6HazQSmrzg0uH37RdvI6u-CRDRGZH2M0Kc3XYJHLCWUVtyajrfEmPa-eWDUk8-LhPK--vr_9sr5bbT59-Li-3qw0YzSXrkXDGNQWKDcd76ntTKexYUbrnmkqGLWaGsuhqaHuO84EcNtRKG9aWErPq6uj7jh1e9Nr43NUgxyj26t4kEE5-W_Gu3u5Dd-lwFA-FkXg7YNADN8mk7Lcu6TNMChvwpTkvPIW5r0X9M1_6C5M0ZfxCtVQTggWbaEuj5SOIaVo7KkZDHJ2U85uyj9ulorXf89w4n_bV4BXR2CXcoinPKlb0vJa0J9KT6RK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383522179</pqid></control><display><type>article</type><title>DBC1, p300, HDAC3, and Siah1 coordinately regulate ELL stability and function for expression of its target genes</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Basu, Subham ; Barad, Mahesh ; Yadav, Dipika ; Nandy, Arijit ; Mukherjee, Bidisha ; Sarkar, Jit ; Chakrabarti, Partha ; Mukhopadhyay, Satinath ; Biswas, Debabrata</creator><creatorcontrib>Basu, Subham ; Barad, Mahesh ; Yadav, Dipika ; Nandy, Arijit ; Mukherjee, Bidisha ; Sarkar, Jit ; Chakrabarti, Partha ; Mukhopadhyay, Satinath ; Biswas, Debabrata</creatorcontrib><description>Among all of the Super Elongation Complex (SEC) components, ELL1 (also known as ELL) is the only bona fide elongation factor that directly stimulates transcription elongation by RNA polymerase II. However, the mechanism(s) of functional regulation of ELL1 (referred to as ELL hereafter), through its stabilization, is completely unknown. Here, we report a function of human DBC1 in regulating ELL stability involving HDAC3, p300, and Siah1. Mechanistically, we show that p300-mediated site-specific acetylation increases, whereas HDAC3-mediated deacetylation decreases, ELL stability through polyubiquitylation by the E3 ubiquitin ligase Siah1. DBC1 competes with HDAC3 for the same binding sites on ELL and thus increases its acetylation and stability. Knockdown of DBC1 reduces ELL levels and expression of a significant number of genes, including those involved in glucose metabolism. Consistently, Type 2 diabetes patient-derived peripheral blood mononuclear cells show reduced expression of DBC1 and ELL and associated key target genes required for glucose homeostasis. Thus, we describe a pathway of regulating stability and functions of key elongation factor ELL for expression of diverse sets of genes, including ones that are linked to Type 2 diabetes pathogenesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1912375117</identifier><identifier>PMID: 32152128</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetylation ; Binding sites ; Biological Sciences ; Deacetylation ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; DNA-directed RNA polymerase ; Elongation ; Event-related potentials ; Gene expression ; Genes ; Glucose ; Glucose metabolism ; Homeostasis ; Leukocytes (mononuclear) ; Pathogenesis ; Peripheral blood mononuclear cells ; RNA polymerase ; RNA polymerase II ; Stability ; Ubiquitin ; Ubiquitin-protein ligase</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (12), p.6509-6520</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 24, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-84784406f035eb5d3fbebc1e4eccd4c3743fc3ef508606db54705fb303efc7f33</citedby><cites>FETCH-LOGICAL-c443t-84784406f035eb5d3fbebc1e4eccd4c3743fc3ef508606db54705fb303efc7f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929567$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929567$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basu, Subham</creatorcontrib><creatorcontrib>Barad, Mahesh</creatorcontrib><creatorcontrib>Yadav, Dipika</creatorcontrib><creatorcontrib>Nandy, Arijit</creatorcontrib><creatorcontrib>Mukherjee, Bidisha</creatorcontrib><creatorcontrib>Sarkar, Jit</creatorcontrib><creatorcontrib>Chakrabarti, Partha</creatorcontrib><creatorcontrib>Mukhopadhyay, Satinath</creatorcontrib><creatorcontrib>Biswas, Debabrata</creatorcontrib><title>DBC1, p300, HDAC3, and Siah1 coordinately regulate ELL stability and function for expression of its target genes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Among all of the Super Elongation Complex (SEC) components, ELL1 (also known as ELL) is the only bona fide elongation factor that directly stimulates transcription elongation by RNA polymerase II. However, the mechanism(s) of functional regulation of ELL1 (referred to as ELL hereafter), through its stabilization, is completely unknown. Here, we report a function of human DBC1 in regulating ELL stability involving HDAC3, p300, and Siah1. Mechanistically, we show that p300-mediated site-specific acetylation increases, whereas HDAC3-mediated deacetylation decreases, ELL stability through polyubiquitylation by the E3 ubiquitin ligase Siah1. DBC1 competes with HDAC3 for the same binding sites on ELL and thus increases its acetylation and stability. Knockdown of DBC1 reduces ELL levels and expression of a significant number of genes, including those involved in glucose metabolism. Consistently, Type 2 diabetes patient-derived peripheral blood mononuclear cells show reduced expression of DBC1 and ELL and associated key target genes required for glucose homeostasis. Thus, we describe a pathway of regulating stability and functions of key elongation factor ELL for expression of diverse sets of genes, including ones that are linked to Type 2 diabetes pathogenesis.</description><subject>Acetylation</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Deacetylation</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>DNA-directed RNA polymerase</subject><subject>Elongation</subject><subject>Event-related potentials</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Homeostasis</subject><subject>Leukocytes (mononuclear)</subject><subject>Pathogenesis</subject><subject>Peripheral blood mononuclear cells</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>Stability</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhlcIREPhzAlkiQuHpB1_rXcvlUpaKFIkDsDZ8nrt1NHGXmwvIv8eLynh4-Sx55nXM_NW1UsMFxgEvRy9She4xYQKjrF4VC0wtHhVsxYeVwsAIlYNI-ysepbSDgBa3sDT6owSzAkmzaIab96t8RKNFGCJ7m6u13SJlO_RZ6fuMdIhxN55lc1wQNFsp6GE6HazQSmrzg0uH37RdvI6u-CRDRGZH2M0Kc3XYJHLCWUVtyajrfEmPa-eWDUk8-LhPK--vr_9sr5bbT59-Li-3qw0YzSXrkXDGNQWKDcd76ntTKexYUbrnmkqGLWaGsuhqaHuO84EcNtRKG9aWErPq6uj7jh1e9Nr43NUgxyj26t4kEE5-W_Gu3u5Dd-lwFA-FkXg7YNADN8mk7Lcu6TNMChvwpTkvPIW5r0X9M1_6C5M0ZfxCtVQTggWbaEuj5SOIaVo7KkZDHJ2U85uyj9ulorXf89w4n_bV4BXR2CXcoinPKlb0vJa0J9KT6RK</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Basu, Subham</creator><creator>Barad, Mahesh</creator><creator>Yadav, Dipika</creator><creator>Nandy, Arijit</creator><creator>Mukherjee, Bidisha</creator><creator>Sarkar, Jit</creator><creator>Chakrabarti, Partha</creator><creator>Mukhopadhyay, Satinath</creator><creator>Biswas, Debabrata</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200324</creationdate><title>DBC1, p300, HDAC3, and Siah1 coordinately regulate ELL stability and function for expression of its target genes</title><author>Basu, Subham ; Barad, Mahesh ; Yadav, Dipika ; Nandy, Arijit ; Mukherjee, Bidisha ; Sarkar, Jit ; Chakrabarti, Partha ; Mukhopadhyay, Satinath ; Biswas, Debabrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-84784406f035eb5d3fbebc1e4eccd4c3743fc3ef508606db54705fb303efc7f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylation</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Deacetylation</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>DNA-directed RNA polymerase</topic><topic>Elongation</topic><topic>Event-related potentials</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Homeostasis</topic><topic>Leukocytes (mononuclear)</topic><topic>Pathogenesis</topic><topic>Peripheral blood mononuclear cells</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>Stability</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Subham</creatorcontrib><creatorcontrib>Barad, Mahesh</creatorcontrib><creatorcontrib>Yadav, Dipika</creatorcontrib><creatorcontrib>Nandy, Arijit</creatorcontrib><creatorcontrib>Mukherjee, Bidisha</creatorcontrib><creatorcontrib>Sarkar, Jit</creatorcontrib><creatorcontrib>Chakrabarti, Partha</creatorcontrib><creatorcontrib>Mukhopadhyay, Satinath</creatorcontrib><creatorcontrib>Biswas, Debabrata</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Subham</au><au>Barad, Mahesh</au><au>Yadav, Dipika</au><au>Nandy, Arijit</au><au>Mukherjee, Bidisha</au><au>Sarkar, Jit</au><au>Chakrabarti, Partha</au><au>Mukhopadhyay, Satinath</au><au>Biswas, Debabrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DBC1, p300, HDAC3, and Siah1 coordinately regulate ELL stability and function for expression of its target genes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-24</date><risdate>2020</risdate><volume>117</volume><issue>12</issue><spage>6509</spage><epage>6520</epage><pages>6509-6520</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Among all of the Super Elongation Complex (SEC) components, ELL1 (also known as ELL) is the only bona fide elongation factor that directly stimulates transcription elongation by RNA polymerase II. However, the mechanism(s) of functional regulation of ELL1 (referred to as ELL hereafter), through its stabilization, is completely unknown. Here, we report a function of human DBC1 in regulating ELL stability involving HDAC3, p300, and Siah1. Mechanistically, we show that p300-mediated site-specific acetylation increases, whereas HDAC3-mediated deacetylation decreases, ELL stability through polyubiquitylation by the E3 ubiquitin ligase Siah1. DBC1 competes with HDAC3 for the same binding sites on ELL and thus increases its acetylation and stability. Knockdown of DBC1 reduces ELL levels and expression of a significant number of genes, including those involved in glucose metabolism. Consistently, Type 2 diabetes patient-derived peripheral blood mononuclear cells show reduced expression of DBC1 and ELL and associated key target genes required for glucose homeostasis. Thus, we describe a pathway of regulating stability and functions of key elongation factor ELL for expression of diverse sets of genes, including ones that are linked to Type 2 diabetes pathogenesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32152128</pmid><doi>10.1073/pnas.1912375117</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (12), p.6509-6520
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104407
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acetylation
Binding sites
Biological Sciences
Deacetylation
Diabetes
Diabetes mellitus (non-insulin dependent)
DNA-directed RNA polymerase
Elongation
Event-related potentials
Gene expression
Genes
Glucose
Glucose metabolism
Homeostasis
Leukocytes (mononuclear)
Pathogenesis
Peripheral blood mononuclear cells
RNA polymerase
RNA polymerase II
Stability
Ubiquitin
Ubiquitin-protein ligase
title DBC1, p300, HDAC3, and Siah1 coordinately regulate ELL stability and function for expression of its target genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DBC1,%20p300,%20HDAC3,%20and%20Siah1%20coordinately%20regulate%20ELL%20stability%20and%20function%20for%20expression%20of%20its%20target%20genes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Basu,%20Subham&rft.date=2020-03-24&rft.volume=117&rft.issue=12&rft.spage=6509&rft.epage=6520&rft.pages=6509-6520&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1912375117&rft_dat=%3Cjstor_pubme%3E26929567%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383522179&rft_id=info:pmid/32152128&rft_jstor_id=26929567&rfr_iscdi=true