High-throughput, combinatorial synthesis of multimetallic nanoclusters
Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experim...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (12), p.6316-6322 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6322 |
---|---|
container_issue | 12 |
container_start_page | 6316 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Yao, Yonggang Huang, Zhennan Li, Tangyuan Wang, Hang Liu, Yifan Stein, Helge S. Mao, Yimin Gao, Jinlong Jiao, Miaolun Dong, Qi Dai, Jiaqi Xie, Pengfei Xie, Hua Lacey, Steven D. Takeuchi, Ichiro Gregoire, John M. Jiang, Rongzhong Wang, Chao Taylor, Andre D. Shahbazian-Yassar, Reza Hu, Liangbing |
description | Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications. |
doi_str_mv | 10.1073/pnas.1903721117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929542</jstor_id><sourcerecordid>26929542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-8e358f1b973ee95c4b417861446efd5e3ded41248442f302fd7d3ae8fe81d6e83</originalsourceid><addsrcrecordid>eNpdkUtv1DAURi0EokNhzQoUwYYFaX39iO0NEqooRarEBtaWx7mZeJTYg-0g9d-TasrwWN3Fd_z52oeQl0AvgCp-eYiuXIChXDEAUI_IBqiBthOGPiYbSplqtWDijDwrZU8pNVLTp-SMM5CdYnxDrm_CbmzrmNOyGw9Lfd_4NG9DdDXl4Kam3MU6YgmlSUMzL1MNM1Y3TcE30cXkp6VUzOU5eTK4qeCLh3lOvl9_-nZ1095-_fzl6uNt6yXvaquRSz3A1iiOaKQXWwFKdyBEh0MvkffYC2BCC8EGTtnQq5471ANq6DvU_Jx8OPYelu2MvcdYs5vsIYfZ5TubXLD_JjGMdpd-WgVUcC3XgjfHglRqsMWHin70KUb01UJHuRawQu8ebsnpx4Kl2jkUj9PkIqalWMZVx7gEZlb07X_oPi05rn-wUppLxqigK3V5pHxOpWQcThsDtfci7b1I-0fkeuL13w898b_NrcCrI7Avq6pTzjrDjBSM_wJCeKQl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383522040</pqid></control><display><type>article</type><title>High-throughput, combinatorial synthesis of multimetallic nanoclusters</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Yao, Yonggang ; Huang, Zhennan ; Li, Tangyuan ; Wang, Hang ; Liu, Yifan ; Stein, Helge S. ; Mao, Yimin ; Gao, Jinlong ; Jiao, Miaolun ; Dong, Qi ; Dai, Jiaqi ; Xie, Pengfei ; Xie, Hua ; Lacey, Steven D. ; Takeuchi, Ichiro ; Gregoire, John M. ; Jiang, Rongzhong ; Wang, Chao ; Taylor, Andre D. ; Shahbazian-Yassar, Reza ; Hu, Liangbing</creator><creatorcontrib>Yao, Yonggang ; Huang, Zhennan ; Li, Tangyuan ; Wang, Hang ; Liu, Yifan ; Stein, Helge S. ; Mao, Yimin ; Gao, Jinlong ; Jiao, Miaolun ; Dong, Qi ; Dai, Jiaqi ; Xie, Pengfei ; Xie, Hua ; Lacey, Steven D. ; Takeuchi, Ichiro ; Gregoire, John M. ; Jiang, Rongzhong ; Wang, Chao ; Taylor, Andre D. ; Shahbazian-Yassar, Reza ; Hu, Liangbing ; California Institute of Technology (CalTech), Pasadena, CA (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1903721117</identifier><identifier>PMID: 32156723</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Combinatorial analysis ; Comparative studies ; Electrocatalysts ; Electrochemistry ; Experimentation ; Exploration ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Nanoclusters ; Physical Sciences ; Rotating disks ; Science & Technology - Other Topics ; Shock heating ; Synthesis ; Thermal shock ; Ultrafines</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (12), p.6316-6322</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 24, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-8e358f1b973ee95c4b417861446efd5e3ded41248442f302fd7d3ae8fe81d6e83</citedby><cites>FETCH-LOGICAL-c536t-8e358f1b973ee95c4b417861446efd5e3ded41248442f302fd7d3ae8fe81d6e83</cites><orcidid>0000-0002-2863-5265 ; 0000000228635265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929542$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929542$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32156723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1603841$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yonggang</creatorcontrib><creatorcontrib>Huang, Zhennan</creatorcontrib><creatorcontrib>Li, Tangyuan</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Stein, Helge S.</creatorcontrib><creatorcontrib>Mao, Yimin</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Jiao, Miaolun</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Xie, Pengfei</creatorcontrib><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Lacey, Steven D.</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Gregoire, John M.</creatorcontrib><creatorcontrib>Jiang, Rongzhong</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Taylor, Andre D.</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>High-throughput, combinatorial synthesis of multimetallic nanoclusters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications.</description><subject>Combinatorial analysis</subject><subject>Comparative studies</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Experimentation</subject><subject>Exploration</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Nanoclusters</subject><subject>Physical Sciences</subject><subject>Rotating disks</subject><subject>Science & Technology - Other Topics</subject><subject>Shock heating</subject><subject>Synthesis</subject><subject>Thermal shock</subject><subject>Ultrafines</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1DAURi0EokNhzQoUwYYFaX39iO0NEqooRarEBtaWx7mZeJTYg-0g9d-TasrwWN3Fd_z52oeQl0AvgCp-eYiuXIChXDEAUI_IBqiBthOGPiYbSplqtWDijDwrZU8pNVLTp-SMM5CdYnxDrm_CbmzrmNOyGw9Lfd_4NG9DdDXl4Kam3MU6YgmlSUMzL1MNM1Y3TcE30cXkp6VUzOU5eTK4qeCLh3lOvl9_-nZ1095-_fzl6uNt6yXvaquRSz3A1iiOaKQXWwFKdyBEh0MvkffYC2BCC8EGTtnQq5471ANq6DvU_Jx8OPYelu2MvcdYs5vsIYfZ5TubXLD_JjGMdpd-WgVUcC3XgjfHglRqsMWHin70KUb01UJHuRawQu8ebsnpx4Kl2jkUj9PkIqalWMZVx7gEZlb07X_oPi05rn-wUppLxqigK3V5pHxOpWQcThsDtfci7b1I-0fkeuL13w898b_NrcCrI7Avq6pTzjrDjBSM_wJCeKQl</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Yao, Yonggang</creator><creator>Huang, Zhennan</creator><creator>Li, Tangyuan</creator><creator>Wang, Hang</creator><creator>Liu, Yifan</creator><creator>Stein, Helge S.</creator><creator>Mao, Yimin</creator><creator>Gao, Jinlong</creator><creator>Jiao, Miaolun</creator><creator>Dong, Qi</creator><creator>Dai, Jiaqi</creator><creator>Xie, Pengfei</creator><creator>Xie, Hua</creator><creator>Lacey, Steven D.</creator><creator>Takeuchi, Ichiro</creator><creator>Gregoire, John M.</creator><creator>Jiang, Rongzhong</creator><creator>Wang, Chao</creator><creator>Taylor, Andre D.</creator><creator>Shahbazian-Yassar, Reza</creator><creator>Hu, Liangbing</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2863-5265</orcidid><orcidid>https://orcid.org/0000000228635265</orcidid></search><sort><creationdate>20200324</creationdate><title>High-throughput, combinatorial synthesis of multimetallic nanoclusters</title><author>Yao, Yonggang ; Huang, Zhennan ; Li, Tangyuan ; Wang, Hang ; Liu, Yifan ; Stein, Helge S. ; Mao, Yimin ; Gao, Jinlong ; Jiao, Miaolun ; Dong, Qi ; Dai, Jiaqi ; Xie, Pengfei ; Xie, Hua ; Lacey, Steven D. ; Takeuchi, Ichiro ; Gregoire, John M. ; Jiang, Rongzhong ; Wang, Chao ; Taylor, Andre D. ; Shahbazian-Yassar, Reza ; Hu, Liangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-8e358f1b973ee95c4b417861446efd5e3ded41248442f302fd7d3ae8fe81d6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Comparative studies</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Experimentation</topic><topic>Exploration</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Nanoclusters</topic><topic>Physical Sciences</topic><topic>Rotating disks</topic><topic>Science & Technology - Other Topics</topic><topic>Shock heating</topic><topic>Synthesis</topic><topic>Thermal shock</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yonggang</creatorcontrib><creatorcontrib>Huang, Zhennan</creatorcontrib><creatorcontrib>Li, Tangyuan</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Stein, Helge S.</creatorcontrib><creatorcontrib>Mao, Yimin</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Jiao, Miaolun</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Xie, Pengfei</creatorcontrib><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Lacey, Steven D.</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Gregoire, John M.</creatorcontrib><creatorcontrib>Jiang, Rongzhong</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Taylor, Andre D.</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yonggang</au><au>Huang, Zhennan</au><au>Li, Tangyuan</au><au>Wang, Hang</au><au>Liu, Yifan</au><au>Stein, Helge S.</au><au>Mao, Yimin</au><au>Gao, Jinlong</au><au>Jiao, Miaolun</au><au>Dong, Qi</au><au>Dai, Jiaqi</au><au>Xie, Pengfei</au><au>Xie, Hua</au><au>Lacey, Steven D.</au><au>Takeuchi, Ichiro</au><au>Gregoire, John M.</au><au>Jiang, Rongzhong</au><au>Wang, Chao</au><au>Taylor, Andre D.</au><au>Shahbazian-Yassar, Reza</au><au>Hu, Liangbing</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput, combinatorial synthesis of multimetallic nanoclusters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-24</date><risdate>2020</risdate><volume>117</volume><issue>12</issue><spage>6316</spage><epage>6322</epage><pages>6316-6322</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32156723</pmid><doi>10.1073/pnas.1903721117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2863-5265</orcidid><orcidid>https://orcid.org/0000000228635265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (12), p.6316-6322 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104385 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Combinatorial analysis Comparative studies Electrocatalysts Electrochemistry Experimentation Exploration INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Nanoclusters Physical Sciences Rotating disks Science & Technology - Other Topics Shock heating Synthesis Thermal shock Ultrafines |
title | High-throughput, combinatorial synthesis of multimetallic nanoclusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput,%20combinatorial%20synthesis%20of%20multimetallic%20nanoclusters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yao,%20Yonggang&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2020-03-24&rft.volume=117&rft.issue=12&rft.spage=6316&rft.epage=6322&rft.pages=6316-6322&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1903721117&rft_dat=%3Cjstor_pubme%3E26929542%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383522040&rft_id=info:pmid/32156723&rft_jstor_id=26929542&rfr_iscdi=true |