High-throughput, combinatorial synthesis of multimetallic nanoclusters

Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (12), p.6316-6322
Hauptverfasser: Yao, Yonggang, Huang, Zhennan, Li, Tangyuan, Wang, Hang, Liu, Yifan, Stein, Helge S., Mao, Yimin, Gao, Jinlong, Jiao, Miaolun, Dong, Qi, Dai, Jiaqi, Xie, Pengfei, Xie, Hua, Lacey, Steven D., Takeuchi, Ichiro, Gregoire, John M., Jiang, Rongzhong, Wang, Chao, Taylor, Andre D., Shahbazian-Yassar, Reza, Hu, Liangbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6322
container_issue 12
container_start_page 6316
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Yao, Yonggang
Huang, Zhennan
Li, Tangyuan
Wang, Hang
Liu, Yifan
Stein, Helge S.
Mao, Yimin
Gao, Jinlong
Jiao, Miaolun
Dong, Qi
Dai, Jiaqi
Xie, Pengfei
Xie, Hua
Lacey, Steven D.
Takeuchi, Ichiro
Gregoire, John M.
Jiang, Rongzhong
Wang, Chao
Taylor, Andre D.
Shahbazian-Yassar, Reza
Hu, Liangbing
description Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications.
doi_str_mv 10.1073/pnas.1903721117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929542</jstor_id><sourcerecordid>26929542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-8e358f1b973ee95c4b417861446efd5e3ded41248442f302fd7d3ae8fe81d6e83</originalsourceid><addsrcrecordid>eNpdkUtv1DAURi0EokNhzQoUwYYFaX39iO0NEqooRarEBtaWx7mZeJTYg-0g9d-TasrwWN3Fd_z52oeQl0AvgCp-eYiuXIChXDEAUI_IBqiBthOGPiYbSplqtWDijDwrZU8pNVLTp-SMM5CdYnxDrm_CbmzrmNOyGw9Lfd_4NG9DdDXl4Kam3MU6YgmlSUMzL1MNM1Y3TcE30cXkp6VUzOU5eTK4qeCLh3lOvl9_-nZ1095-_fzl6uNt6yXvaquRSz3A1iiOaKQXWwFKdyBEh0MvkffYC2BCC8EGTtnQq5471ANq6DvU_Jx8OPYelu2MvcdYs5vsIYfZ5TubXLD_JjGMdpd-WgVUcC3XgjfHglRqsMWHin70KUb01UJHuRawQu8ebsnpx4Kl2jkUj9PkIqalWMZVx7gEZlb07X_oPi05rn-wUppLxqigK3V5pHxOpWQcThsDtfci7b1I-0fkeuL13w898b_NrcCrI7Avq6pTzjrDjBSM_wJCeKQl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383522040</pqid></control><display><type>article</type><title>High-throughput, combinatorial synthesis of multimetallic nanoclusters</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Yao, Yonggang ; Huang, Zhennan ; Li, Tangyuan ; Wang, Hang ; Liu, Yifan ; Stein, Helge S. ; Mao, Yimin ; Gao, Jinlong ; Jiao, Miaolun ; Dong, Qi ; Dai, Jiaqi ; Xie, Pengfei ; Xie, Hua ; Lacey, Steven D. ; Takeuchi, Ichiro ; Gregoire, John M. ; Jiang, Rongzhong ; Wang, Chao ; Taylor, Andre D. ; Shahbazian-Yassar, Reza ; Hu, Liangbing</creator><creatorcontrib>Yao, Yonggang ; Huang, Zhennan ; Li, Tangyuan ; Wang, Hang ; Liu, Yifan ; Stein, Helge S. ; Mao, Yimin ; Gao, Jinlong ; Jiao, Miaolun ; Dong, Qi ; Dai, Jiaqi ; Xie, Pengfei ; Xie, Hua ; Lacey, Steven D. ; Takeuchi, Ichiro ; Gregoire, John M. ; Jiang, Rongzhong ; Wang, Chao ; Taylor, Andre D. ; Shahbazian-Yassar, Reza ; Hu, Liangbing ; California Institute of Technology (CalTech), Pasadena, CA (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1903721117</identifier><identifier>PMID: 32156723</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Combinatorial analysis ; Comparative studies ; Electrocatalysts ; Electrochemistry ; Experimentation ; Exploration ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Nanoclusters ; Physical Sciences ; Rotating disks ; Science &amp; Technology - Other Topics ; Shock heating ; Synthesis ; Thermal shock ; Ultrafines</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (12), p.6316-6322</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 24, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-8e358f1b973ee95c4b417861446efd5e3ded41248442f302fd7d3ae8fe81d6e83</citedby><cites>FETCH-LOGICAL-c536t-8e358f1b973ee95c4b417861446efd5e3ded41248442f302fd7d3ae8fe81d6e83</cites><orcidid>0000-0002-2863-5265 ; 0000000228635265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929542$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929542$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32156723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1603841$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yonggang</creatorcontrib><creatorcontrib>Huang, Zhennan</creatorcontrib><creatorcontrib>Li, Tangyuan</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Stein, Helge S.</creatorcontrib><creatorcontrib>Mao, Yimin</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Jiao, Miaolun</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Xie, Pengfei</creatorcontrib><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Lacey, Steven D.</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Gregoire, John M.</creatorcontrib><creatorcontrib>Jiang, Rongzhong</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Taylor, Andre D.</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>High-throughput, combinatorial synthesis of multimetallic nanoclusters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications.</description><subject>Combinatorial analysis</subject><subject>Comparative studies</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Experimentation</subject><subject>Exploration</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Nanoclusters</subject><subject>Physical Sciences</subject><subject>Rotating disks</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Shock heating</subject><subject>Synthesis</subject><subject>Thermal shock</subject><subject>Ultrafines</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1DAURi0EokNhzQoUwYYFaX39iO0NEqooRarEBtaWx7mZeJTYg-0g9d-TasrwWN3Fd_z52oeQl0AvgCp-eYiuXIChXDEAUI_IBqiBthOGPiYbSplqtWDijDwrZU8pNVLTp-SMM5CdYnxDrm_CbmzrmNOyGw9Lfd_4NG9DdDXl4Kam3MU6YgmlSUMzL1MNM1Y3TcE30cXkp6VUzOU5eTK4qeCLh3lOvl9_-nZ1095-_fzl6uNt6yXvaquRSz3A1iiOaKQXWwFKdyBEh0MvkffYC2BCC8EGTtnQq5471ANq6DvU_Jx8OPYelu2MvcdYs5vsIYfZ5TubXLD_JjGMdpd-WgVUcC3XgjfHglRqsMWHin70KUb01UJHuRawQu8ebsnpx4Kl2jkUj9PkIqalWMZVx7gEZlb07X_oPi05rn-wUppLxqigK3V5pHxOpWQcThsDtfci7b1I-0fkeuL13w898b_NrcCrI7Avq6pTzjrDjBSM_wJCeKQl</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Yao, Yonggang</creator><creator>Huang, Zhennan</creator><creator>Li, Tangyuan</creator><creator>Wang, Hang</creator><creator>Liu, Yifan</creator><creator>Stein, Helge S.</creator><creator>Mao, Yimin</creator><creator>Gao, Jinlong</creator><creator>Jiao, Miaolun</creator><creator>Dong, Qi</creator><creator>Dai, Jiaqi</creator><creator>Xie, Pengfei</creator><creator>Xie, Hua</creator><creator>Lacey, Steven D.</creator><creator>Takeuchi, Ichiro</creator><creator>Gregoire, John M.</creator><creator>Jiang, Rongzhong</creator><creator>Wang, Chao</creator><creator>Taylor, Andre D.</creator><creator>Shahbazian-Yassar, Reza</creator><creator>Hu, Liangbing</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2863-5265</orcidid><orcidid>https://orcid.org/0000000228635265</orcidid></search><sort><creationdate>20200324</creationdate><title>High-throughput, combinatorial synthesis of multimetallic nanoclusters</title><author>Yao, Yonggang ; Huang, Zhennan ; Li, Tangyuan ; Wang, Hang ; Liu, Yifan ; Stein, Helge S. ; Mao, Yimin ; Gao, Jinlong ; Jiao, Miaolun ; Dong, Qi ; Dai, Jiaqi ; Xie, Pengfei ; Xie, Hua ; Lacey, Steven D. ; Takeuchi, Ichiro ; Gregoire, John M. ; Jiang, Rongzhong ; Wang, Chao ; Taylor, Andre D. ; Shahbazian-Yassar, Reza ; Hu, Liangbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-8e358f1b973ee95c4b417861446efd5e3ded41248442f302fd7d3ae8fe81d6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Comparative studies</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Experimentation</topic><topic>Exploration</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Nanoclusters</topic><topic>Physical Sciences</topic><topic>Rotating disks</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Shock heating</topic><topic>Synthesis</topic><topic>Thermal shock</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yonggang</creatorcontrib><creatorcontrib>Huang, Zhennan</creatorcontrib><creatorcontrib>Li, Tangyuan</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><creatorcontrib>Liu, Yifan</creatorcontrib><creatorcontrib>Stein, Helge S.</creatorcontrib><creatorcontrib>Mao, Yimin</creatorcontrib><creatorcontrib>Gao, Jinlong</creatorcontrib><creatorcontrib>Jiao, Miaolun</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><creatorcontrib>Dai, Jiaqi</creatorcontrib><creatorcontrib>Xie, Pengfei</creatorcontrib><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Lacey, Steven D.</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Gregoire, John M.</creatorcontrib><creatorcontrib>Jiang, Rongzhong</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Taylor, Andre D.</creatorcontrib><creatorcontrib>Shahbazian-Yassar, Reza</creatorcontrib><creatorcontrib>Hu, Liangbing</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yonggang</au><au>Huang, Zhennan</au><au>Li, Tangyuan</au><au>Wang, Hang</au><au>Liu, Yifan</au><au>Stein, Helge S.</au><au>Mao, Yimin</au><au>Gao, Jinlong</au><au>Jiao, Miaolun</au><au>Dong, Qi</au><au>Dai, Jiaqi</au><au>Xie, Pengfei</au><au>Xie, Hua</au><au>Lacey, Steven D.</au><au>Takeuchi, Ichiro</au><au>Gregoire, John M.</au><au>Jiang, Rongzhong</au><au>Wang, Chao</au><au>Taylor, Andre D.</au><au>Shahbazian-Yassar, Reza</au><au>Hu, Liangbing</au><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput, combinatorial synthesis of multimetallic nanoclusters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-24</date><risdate>2020</risdate><volume>117</volume><issue>12</issue><spage>6316</spage><epage>6322</epage><pages>6316-6322</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional “trial-and-error” experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32156723</pmid><doi>10.1073/pnas.1903721117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2863-5265</orcidid><orcidid>https://orcid.org/0000000228635265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (12), p.6316-6322
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104385
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Combinatorial analysis
Comparative studies
Electrocatalysts
Electrochemistry
Experimentation
Exploration
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Nanoclusters
Physical Sciences
Rotating disks
Science & Technology - Other Topics
Shock heating
Synthesis
Thermal shock
Ultrafines
title High-throughput, combinatorial synthesis of multimetallic nanoclusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput,%20combinatorial%20synthesis%20of%20multimetallic%20nanoclusters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yao,%20Yonggang&rft.aucorp=California%20Institute%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2020-03-24&rft.volume=117&rft.issue=12&rft.spage=6316&rft.epage=6322&rft.pages=6316-6322&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1903721117&rft_dat=%3Cjstor_pubme%3E26929542%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383522040&rft_id=info:pmid/32156723&rft_jstor_id=26929542&rfr_iscdi=true