Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding
To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating Cal...
Gespeichert in:
Veröffentlicht in: | Cell metabolism 2020-02, Vol.31 (2), p.301-312.e5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312.e5 |
---|---|
container_issue | 2 |
container_start_page | 301 |
container_title | Cell metabolism |
container_volume | 31 |
creator | Cheng, Wenwen Gonzalez, Ian Pan, Warren Tsang, Anthony H. Adams, Jessica Ndoka, Ermelinda Gordian, Desiree Khoury, Basma Roelofs, Karen Evers, Simon S. MacKinnon, Andrew Wu, Shuangcheng Frikke-Schmidt, Henriette Flak, Jonathan N. Trevaskis, James L. Rhodes, Christopher J. Fukada, So-ichiro Seeley, Randy J. Sandoval, Darleen A. Olson, David P. Blouet, Clemence Myers, Martin G. |
description | To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.
[Display omitted]
•NTS Calcr mediates food intake suppression but not aversive responses to sCT•Activating NTS Calcr neurons non-aversively suppresses feeding•These neurons act via non-CGRP PBN neurons•These neurons control long-term energy balance, not just short-term feeding
While the hindbrain is often postulated to control only short-term parameters of feeding via circuits that mediate aversive responses when activated strongly, Cheng et al. have identified a hindbrain system that participates in the physiological control of energy balance and suppresses food intake without activating aversive systems or symptoms. |
doi_str_mv | 10.1016/j.cmet.2019.12.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413119306771</els_id><sourcerecordid>2342359674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-4278106ceda354a88fab8c0b17d3aef14dad1f237fa750df08790f0a4d81eb5f3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIlsIf4IB85JLgseNNIiEkWPUDqSwSLWfLa4-3XmXtxXYi9Q_wu_GypYILpxmN33ueea-qXgNtgMLi3bbRO8wNozA0wBoK7El1CgNnddcy-rT0QtC6BQ4n1YuUtpTyBR_48-qEwyDEMNDT6udSjdrl4J0n31DjPodIVjjF4BMps3yH5EuYEpLVpEecErmNSudSb8LosoqutMvgcwwjOfcYN_fkkxqV10hmp37zV8HXasaY3IzkZtrvI6bkgifBkgtE4_zmZfXMqjHhq4d6Vn2_OL9dXtXXXy8_Lz9e11owyHXLuh7oQqNRXLSq761a95quoTNcoYXWKAOW8c6qTlBjad8N1FLVmh5wLSw_qz4cdffTeodGY1lcjXIf3U7FexmUk_--eHcnN2GWHdCWd6IIvH0QiOHHhCnLnUsax3IxFpsk4y3jYlh0bYGyI1THkFJE-_gNUHkIUG7lIUB5CFACkyXAQnrz94KPlD-JFcD7IwCLTbPDKJN2WOw2LqLO0gT3P_1f6kiwqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342359674</pqid></control><display><type>article</type><title>Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cheng, Wenwen ; Gonzalez, Ian ; Pan, Warren ; Tsang, Anthony H. ; Adams, Jessica ; Ndoka, Ermelinda ; Gordian, Desiree ; Khoury, Basma ; Roelofs, Karen ; Evers, Simon S. ; MacKinnon, Andrew ; Wu, Shuangcheng ; Frikke-Schmidt, Henriette ; Flak, Jonathan N. ; Trevaskis, James L. ; Rhodes, Christopher J. ; Fukada, So-ichiro ; Seeley, Randy J. ; Sandoval, Darleen A. ; Olson, David P. ; Blouet, Clemence ; Myers, Martin G.</creator><creatorcontrib>Cheng, Wenwen ; Gonzalez, Ian ; Pan, Warren ; Tsang, Anthony H. ; Adams, Jessica ; Ndoka, Ermelinda ; Gordian, Desiree ; Khoury, Basma ; Roelofs, Karen ; Evers, Simon S. ; MacKinnon, Andrew ; Wu, Shuangcheng ; Frikke-Schmidt, Henriette ; Flak, Jonathan N. ; Trevaskis, James L. ; Rhodes, Christopher J. ; Fukada, So-ichiro ; Seeley, Randy J. ; Sandoval, Darleen A. ; Olson, David P. ; Blouet, Clemence ; Myers, Martin G.</creatorcontrib><description>To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.
[Display omitted]
•NTS Calcr mediates food intake suppression but not aversive responses to sCT•Activating NTS Calcr neurons non-aversively suppresses feeding•These neurons act via non-CGRP PBN neurons•These neurons control long-term energy balance, not just short-term feeding
While the hindbrain is often postulated to control only short-term parameters of feeding via circuits that mediate aversive responses when activated strongly, Cheng et al. have identified a hindbrain system that participates in the physiological control of energy balance and suppresses food intake without activating aversive systems or symptoms.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2019.12.012</identifier><identifier>PMID: 31955990</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; anorexia ; aversion ; Body Weight ; calcitonin receptor ; Eating ; Energy Metabolism ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons - cytology ; Neurons - metabolism ; NTS ; obesity ; PBN ; Receptors, Calcitonin - physiology ; Solitary Nucleus - cytology ; Solitary Nucleus - metabolism</subject><ispartof>Cell metabolism, 2020-02, Vol.31 (2), p.301-312.e5</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors. Published by Elsevier Inc. 2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-4278106ceda354a88fab8c0b17d3aef14dad1f237fa750df08790f0a4d81eb5f3</citedby><cites>FETCH-LOGICAL-c521t-4278106ceda354a88fab8c0b17d3aef14dad1f237fa750df08790f0a4d81eb5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1550413119306771$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31955990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Wenwen</creatorcontrib><creatorcontrib>Gonzalez, Ian</creatorcontrib><creatorcontrib>Pan, Warren</creatorcontrib><creatorcontrib>Tsang, Anthony H.</creatorcontrib><creatorcontrib>Adams, Jessica</creatorcontrib><creatorcontrib>Ndoka, Ermelinda</creatorcontrib><creatorcontrib>Gordian, Desiree</creatorcontrib><creatorcontrib>Khoury, Basma</creatorcontrib><creatorcontrib>Roelofs, Karen</creatorcontrib><creatorcontrib>Evers, Simon S.</creatorcontrib><creatorcontrib>MacKinnon, Andrew</creatorcontrib><creatorcontrib>Wu, Shuangcheng</creatorcontrib><creatorcontrib>Frikke-Schmidt, Henriette</creatorcontrib><creatorcontrib>Flak, Jonathan N.</creatorcontrib><creatorcontrib>Trevaskis, James L.</creatorcontrib><creatorcontrib>Rhodes, Christopher J.</creatorcontrib><creatorcontrib>Fukada, So-ichiro</creatorcontrib><creatorcontrib>Seeley, Randy J.</creatorcontrib><creatorcontrib>Sandoval, Darleen A.</creatorcontrib><creatorcontrib>Olson, David P.</creatorcontrib><creatorcontrib>Blouet, Clemence</creatorcontrib><creatorcontrib>Myers, Martin G.</creatorcontrib><title>Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.
[Display omitted]
•NTS Calcr mediates food intake suppression but not aversive responses to sCT•Activating NTS Calcr neurons non-aversively suppresses feeding•These neurons act via non-CGRP PBN neurons•These neurons control long-term energy balance, not just short-term feeding
While the hindbrain is often postulated to control only short-term parameters of feeding via circuits that mediate aversive responses when activated strongly, Cheng et al. have identified a hindbrain system that participates in the physiological control of energy balance and suppresses food intake without activating aversive systems or symptoms.</description><subject>Animals</subject><subject>anorexia</subject><subject>aversion</subject><subject>Body Weight</subject><subject>calcitonin receptor</subject><subject>Eating</subject><subject>Energy Metabolism</subject><subject>Female</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>NTS</subject><subject>obesity</subject><subject>PBN</subject><subject>Receptors, Calcitonin - physiology</subject><subject>Solitary Nucleus - cytology</subject><subject>Solitary Nucleus - metabolism</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQjRCIlsIf4IB85JLgseNNIiEkWPUDqSwSLWfLa4-3XmXtxXYi9Q_wu_GypYILpxmN33ueea-qXgNtgMLi3bbRO8wNozA0wBoK7El1CgNnddcy-rT0QtC6BQ4n1YuUtpTyBR_48-qEwyDEMNDT6udSjdrl4J0n31DjPodIVjjF4BMps3yH5EuYEpLVpEecErmNSudSb8LosoqutMvgcwwjOfcYN_fkkxqV10hmp37zV8HXasaY3IzkZtrvI6bkgifBkgtE4_zmZfXMqjHhq4d6Vn2_OL9dXtXXXy8_Lz9e11owyHXLuh7oQqNRXLSq761a95quoTNcoYXWKAOW8c6qTlBjad8N1FLVmh5wLSw_qz4cdffTeodGY1lcjXIf3U7FexmUk_--eHcnN2GWHdCWd6IIvH0QiOHHhCnLnUsax3IxFpsk4y3jYlh0bYGyI1THkFJE-_gNUHkIUG7lIUB5CFACkyXAQnrz94KPlD-JFcD7IwCLTbPDKJN2WOw2LqLO0gT3P_1f6kiwqw</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Cheng, Wenwen</creator><creator>Gonzalez, Ian</creator><creator>Pan, Warren</creator><creator>Tsang, Anthony H.</creator><creator>Adams, Jessica</creator><creator>Ndoka, Ermelinda</creator><creator>Gordian, Desiree</creator><creator>Khoury, Basma</creator><creator>Roelofs, Karen</creator><creator>Evers, Simon S.</creator><creator>MacKinnon, Andrew</creator><creator>Wu, Shuangcheng</creator><creator>Frikke-Schmidt, Henriette</creator><creator>Flak, Jonathan N.</creator><creator>Trevaskis, James L.</creator><creator>Rhodes, Christopher J.</creator><creator>Fukada, So-ichiro</creator><creator>Seeley, Randy J.</creator><creator>Sandoval, Darleen A.</creator><creator>Olson, David P.</creator><creator>Blouet, Clemence</creator><creator>Myers, Martin G.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200204</creationdate><title>Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding</title><author>Cheng, Wenwen ; Gonzalez, Ian ; Pan, Warren ; Tsang, Anthony H. ; Adams, Jessica ; Ndoka, Ermelinda ; Gordian, Desiree ; Khoury, Basma ; Roelofs, Karen ; Evers, Simon S. ; MacKinnon, Andrew ; Wu, Shuangcheng ; Frikke-Schmidt, Henriette ; Flak, Jonathan N. ; Trevaskis, James L. ; Rhodes, Christopher J. ; Fukada, So-ichiro ; Seeley, Randy J. ; Sandoval, Darleen A. ; Olson, David P. ; Blouet, Clemence ; Myers, Martin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-4278106ceda354a88fab8c0b17d3aef14dad1f237fa750df08790f0a4d81eb5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>anorexia</topic><topic>aversion</topic><topic>Body Weight</topic><topic>calcitonin receptor</topic><topic>Eating</topic><topic>Energy Metabolism</topic><topic>Female</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>NTS</topic><topic>obesity</topic><topic>PBN</topic><topic>Receptors, Calcitonin - physiology</topic><topic>Solitary Nucleus - cytology</topic><topic>Solitary Nucleus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Wenwen</creatorcontrib><creatorcontrib>Gonzalez, Ian</creatorcontrib><creatorcontrib>Pan, Warren</creatorcontrib><creatorcontrib>Tsang, Anthony H.</creatorcontrib><creatorcontrib>Adams, Jessica</creatorcontrib><creatorcontrib>Ndoka, Ermelinda</creatorcontrib><creatorcontrib>Gordian, Desiree</creatorcontrib><creatorcontrib>Khoury, Basma</creatorcontrib><creatorcontrib>Roelofs, Karen</creatorcontrib><creatorcontrib>Evers, Simon S.</creatorcontrib><creatorcontrib>MacKinnon, Andrew</creatorcontrib><creatorcontrib>Wu, Shuangcheng</creatorcontrib><creatorcontrib>Frikke-Schmidt, Henriette</creatorcontrib><creatorcontrib>Flak, Jonathan N.</creatorcontrib><creatorcontrib>Trevaskis, James L.</creatorcontrib><creatorcontrib>Rhodes, Christopher J.</creatorcontrib><creatorcontrib>Fukada, So-ichiro</creatorcontrib><creatorcontrib>Seeley, Randy J.</creatorcontrib><creatorcontrib>Sandoval, Darleen A.</creatorcontrib><creatorcontrib>Olson, David P.</creatorcontrib><creatorcontrib>Blouet, Clemence</creatorcontrib><creatorcontrib>Myers, Martin G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Wenwen</au><au>Gonzalez, Ian</au><au>Pan, Warren</au><au>Tsang, Anthony H.</au><au>Adams, Jessica</au><au>Ndoka, Ermelinda</au><au>Gordian, Desiree</au><au>Khoury, Basma</au><au>Roelofs, Karen</au><au>Evers, Simon S.</au><au>MacKinnon, Andrew</au><au>Wu, Shuangcheng</au><au>Frikke-Schmidt, Henriette</au><au>Flak, Jonathan N.</au><au>Trevaskis, James L.</au><au>Rhodes, Christopher J.</au><au>Fukada, So-ichiro</au><au>Seeley, Randy J.</au><au>Sandoval, Darleen A.</au><au>Olson, David P.</au><au>Blouet, Clemence</au><au>Myers, Martin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>31</volume><issue>2</issue><spage>301</spage><epage>312.e5</epage><pages>301-312.e5</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.
[Display omitted]
•NTS Calcr mediates food intake suppression but not aversive responses to sCT•Activating NTS Calcr neurons non-aversively suppresses feeding•These neurons act via non-CGRP PBN neurons•These neurons control long-term energy balance, not just short-term feeding
While the hindbrain is often postulated to control only short-term parameters of feeding via circuits that mediate aversive responses when activated strongly, Cheng et al. have identified a hindbrain system that participates in the physiological control of energy balance and suppresses food intake without activating aversive systems or symptoms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31955990</pmid><doi>10.1016/j.cmet.2019.12.012</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-4131 |
ispartof | Cell metabolism, 2020-02, Vol.31 (2), p.301-312.e5 |
issn | 1550-4131 1932-7420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104375 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals anorexia aversion Body Weight calcitonin receptor Eating Energy Metabolism Female Male Mice Mice, Inbred C57BL Mice, Knockout Neurons - cytology Neurons - metabolism NTS obesity PBN Receptors, Calcitonin - physiology Solitary Nucleus - cytology Solitary Nucleus - metabolism |
title | Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcitonin%20Receptor%20Neurons%20in%20the%20Mouse%20Nucleus%20Tractus%20Solitarius%20Control%20Energy%20Balance%20via%20the%20Non-aversive%20Suppression%20of%20Feeding&rft.jtitle=Cell%20metabolism&rft.au=Cheng,%20Wenwen&rft.date=2020-02-04&rft.volume=31&rft.issue=2&rft.spage=301&rft.epage=312.e5&rft.pages=301-312.e5&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2019.12.012&rft_dat=%3Cproquest_pubme%3E2342359674%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342359674&rft_id=info:pmid/31955990&rft_els_id=S1550413119306771&rfr_iscdi=true |