Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding

To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating Cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2020-02, Vol.31 (2), p.301-312.e5
Hauptverfasser: Cheng, Wenwen, Gonzalez, Ian, Pan, Warren, Tsang, Anthony H., Adams, Jessica, Ndoka, Ermelinda, Gordian, Desiree, Khoury, Basma, Roelofs, Karen, Evers, Simon S., MacKinnon, Andrew, Wu, Shuangcheng, Frikke-Schmidt, Henriette, Flak, Jonathan N., Trevaskis, James L., Rhodes, Christopher J., Fukada, So-ichiro, Seeley, Randy J., Sandoval, Darleen A., Olson, David P., Blouet, Clemence, Myers, Martin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312.e5
container_issue 2
container_start_page 301
container_title Cell metabolism
container_volume 31
creator Cheng, Wenwen
Gonzalez, Ian
Pan, Warren
Tsang, Anthony H.
Adams, Jessica
Ndoka, Ermelinda
Gordian, Desiree
Khoury, Basma
Roelofs, Karen
Evers, Simon S.
MacKinnon, Andrew
Wu, Shuangcheng
Frikke-Schmidt, Henriette
Flak, Jonathan N.
Trevaskis, James L.
Rhodes, Christopher J.
Fukada, So-ichiro
Seeley, Randy J.
Sandoval, Darleen A.
Olson, David P.
Blouet, Clemence
Myers, Martin G.
description To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems. [Display omitted] •NTS Calcr mediates food intake suppression but not aversive responses to sCT•Activating NTS Calcr neurons non-aversively suppresses feeding•These neurons act via non-CGRP PBN neurons•These neurons control long-term energy balance, not just short-term feeding While the hindbrain is often postulated to control only short-term parameters of feeding via circuits that mediate aversive responses when activated strongly, Cheng et al. have identified a hindbrain system that participates in the physiological control of energy balance and suppresses food intake without activating aversive systems or symptoms.
doi_str_mv 10.1016/j.cmet.2019.12.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413119306771</els_id><sourcerecordid>2342359674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-4278106ceda354a88fab8c0b17d3aef14dad1f237fa750df08790f0a4d81eb5f3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIlsIf4IB85JLgseNNIiEkWPUDqSwSLWfLa4-3XmXtxXYi9Q_wu_GypYILpxmN33ueea-qXgNtgMLi3bbRO8wNozA0wBoK7El1CgNnddcy-rT0QtC6BQ4n1YuUtpTyBR_48-qEwyDEMNDT6udSjdrl4J0n31DjPodIVjjF4BMps3yH5EuYEpLVpEecErmNSudSb8LosoqutMvgcwwjOfcYN_fkkxqV10hmp37zV8HXasaY3IzkZtrvI6bkgifBkgtE4_zmZfXMqjHhq4d6Vn2_OL9dXtXXXy8_Lz9e11owyHXLuh7oQqNRXLSq761a95quoTNcoYXWKAOW8c6qTlBjad8N1FLVmh5wLSw_qz4cdffTeodGY1lcjXIf3U7FexmUk_--eHcnN2GWHdCWd6IIvH0QiOHHhCnLnUsax3IxFpsk4y3jYlh0bYGyI1THkFJE-_gNUHkIUG7lIUB5CFACkyXAQnrz94KPlD-JFcD7IwCLTbPDKJN2WOw2LqLO0gT3P_1f6kiwqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342359674</pqid></control><display><type>article</type><title>Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cheng, Wenwen ; Gonzalez, Ian ; Pan, Warren ; Tsang, Anthony H. ; Adams, Jessica ; Ndoka, Ermelinda ; Gordian, Desiree ; Khoury, Basma ; Roelofs, Karen ; Evers, Simon S. ; MacKinnon, Andrew ; Wu, Shuangcheng ; Frikke-Schmidt, Henriette ; Flak, Jonathan N. ; Trevaskis, James L. ; Rhodes, Christopher J. ; Fukada, So-ichiro ; Seeley, Randy J. ; Sandoval, Darleen A. ; Olson, David P. ; Blouet, Clemence ; Myers, Martin G.</creator><creatorcontrib>Cheng, Wenwen ; Gonzalez, Ian ; Pan, Warren ; Tsang, Anthony H. ; Adams, Jessica ; Ndoka, Ermelinda ; Gordian, Desiree ; Khoury, Basma ; Roelofs, Karen ; Evers, Simon S. ; MacKinnon, Andrew ; Wu, Shuangcheng ; Frikke-Schmidt, Henriette ; Flak, Jonathan N. ; Trevaskis, James L. ; Rhodes, Christopher J. ; Fukada, So-ichiro ; Seeley, Randy J. ; Sandoval, Darleen A. ; Olson, David P. ; Blouet, Clemence ; Myers, Martin G.</creatorcontrib><description>To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems. [Display omitted] •NTS Calcr mediates food intake suppression but not aversive responses to sCT•Activating NTS Calcr neurons non-aversively suppresses feeding•These neurons act via non-CGRP PBN neurons•These neurons control long-term energy balance, not just short-term feeding While the hindbrain is often postulated to control only short-term parameters of feeding via circuits that mediate aversive responses when activated strongly, Cheng et al. have identified a hindbrain system that participates in the physiological control of energy balance and suppresses food intake without activating aversive systems or symptoms.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2019.12.012</identifier><identifier>PMID: 31955990</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; anorexia ; aversion ; Body Weight ; calcitonin receptor ; Eating ; Energy Metabolism ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons - cytology ; Neurons - metabolism ; NTS ; obesity ; PBN ; Receptors, Calcitonin - physiology ; Solitary Nucleus - cytology ; Solitary Nucleus - metabolism</subject><ispartof>Cell metabolism, 2020-02, Vol.31 (2), p.301-312.e5</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors. Published by Elsevier Inc. 2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-4278106ceda354a88fab8c0b17d3aef14dad1f237fa750df08790f0a4d81eb5f3</citedby><cites>FETCH-LOGICAL-c521t-4278106ceda354a88fab8c0b17d3aef14dad1f237fa750df08790f0a4d81eb5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1550413119306771$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31955990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Wenwen</creatorcontrib><creatorcontrib>Gonzalez, Ian</creatorcontrib><creatorcontrib>Pan, Warren</creatorcontrib><creatorcontrib>Tsang, Anthony H.</creatorcontrib><creatorcontrib>Adams, Jessica</creatorcontrib><creatorcontrib>Ndoka, Ermelinda</creatorcontrib><creatorcontrib>Gordian, Desiree</creatorcontrib><creatorcontrib>Khoury, Basma</creatorcontrib><creatorcontrib>Roelofs, Karen</creatorcontrib><creatorcontrib>Evers, Simon S.</creatorcontrib><creatorcontrib>MacKinnon, Andrew</creatorcontrib><creatorcontrib>Wu, Shuangcheng</creatorcontrib><creatorcontrib>Frikke-Schmidt, Henriette</creatorcontrib><creatorcontrib>Flak, Jonathan N.</creatorcontrib><creatorcontrib>Trevaskis, James L.</creatorcontrib><creatorcontrib>Rhodes, Christopher J.</creatorcontrib><creatorcontrib>Fukada, So-ichiro</creatorcontrib><creatorcontrib>Seeley, Randy J.</creatorcontrib><creatorcontrib>Sandoval, Darleen A.</creatorcontrib><creatorcontrib>Olson, David P.</creatorcontrib><creatorcontrib>Blouet, Clemence</creatorcontrib><creatorcontrib>Myers, Martin G.</creatorcontrib><title>Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems. [Display omitted] •NTS Calcr mediates food intake suppression but not aversive responses to sCT•Activating NTS Calcr neurons non-aversively suppresses feeding•These neurons act via non-CGRP PBN neurons•These neurons control long-term energy balance, not just short-term feeding While the hindbrain is often postulated to control only short-term parameters of feeding via circuits that mediate aversive responses when activated strongly, Cheng et al. have identified a hindbrain system that participates in the physiological control of energy balance and suppresses food intake without activating aversive systems or symptoms.</description><subject>Animals</subject><subject>anorexia</subject><subject>aversion</subject><subject>Body Weight</subject><subject>calcitonin receptor</subject><subject>Eating</subject><subject>Energy Metabolism</subject><subject>Female</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>NTS</subject><subject>obesity</subject><subject>PBN</subject><subject>Receptors, Calcitonin - physiology</subject><subject>Solitary Nucleus - cytology</subject><subject>Solitary Nucleus - metabolism</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQjRCIlsIf4IB85JLgseNNIiEkWPUDqSwSLWfLa4-3XmXtxXYi9Q_wu_GypYILpxmN33ueea-qXgNtgMLi3bbRO8wNozA0wBoK7El1CgNnddcy-rT0QtC6BQ4n1YuUtpTyBR_48-qEwyDEMNDT6udSjdrl4J0n31DjPodIVjjF4BMps3yH5EuYEpLVpEecErmNSudSb8LosoqutMvgcwwjOfcYN_fkkxqV10hmp37zV8HXasaY3IzkZtrvI6bkgifBkgtE4_zmZfXMqjHhq4d6Vn2_OL9dXtXXXy8_Lz9e11owyHXLuh7oQqNRXLSq761a95quoTNcoYXWKAOW8c6qTlBjad8N1FLVmh5wLSw_qz4cdffTeodGY1lcjXIf3U7FexmUk_--eHcnN2GWHdCWd6IIvH0QiOHHhCnLnUsax3IxFpsk4y3jYlh0bYGyI1THkFJE-_gNUHkIUG7lIUB5CFACkyXAQnrz94KPlD-JFcD7IwCLTbPDKJN2WOw2LqLO0gT3P_1f6kiwqw</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Cheng, Wenwen</creator><creator>Gonzalez, Ian</creator><creator>Pan, Warren</creator><creator>Tsang, Anthony H.</creator><creator>Adams, Jessica</creator><creator>Ndoka, Ermelinda</creator><creator>Gordian, Desiree</creator><creator>Khoury, Basma</creator><creator>Roelofs, Karen</creator><creator>Evers, Simon S.</creator><creator>MacKinnon, Andrew</creator><creator>Wu, Shuangcheng</creator><creator>Frikke-Schmidt, Henriette</creator><creator>Flak, Jonathan N.</creator><creator>Trevaskis, James L.</creator><creator>Rhodes, Christopher J.</creator><creator>Fukada, So-ichiro</creator><creator>Seeley, Randy J.</creator><creator>Sandoval, Darleen A.</creator><creator>Olson, David P.</creator><creator>Blouet, Clemence</creator><creator>Myers, Martin G.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200204</creationdate><title>Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding</title><author>Cheng, Wenwen ; Gonzalez, Ian ; Pan, Warren ; Tsang, Anthony H. ; Adams, Jessica ; Ndoka, Ermelinda ; Gordian, Desiree ; Khoury, Basma ; Roelofs, Karen ; Evers, Simon S. ; MacKinnon, Andrew ; Wu, Shuangcheng ; Frikke-Schmidt, Henriette ; Flak, Jonathan N. ; Trevaskis, James L. ; Rhodes, Christopher J. ; Fukada, So-ichiro ; Seeley, Randy J. ; Sandoval, Darleen A. ; Olson, David P. ; Blouet, Clemence ; Myers, Martin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-4278106ceda354a88fab8c0b17d3aef14dad1f237fa750df08790f0a4d81eb5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>anorexia</topic><topic>aversion</topic><topic>Body Weight</topic><topic>calcitonin receptor</topic><topic>Eating</topic><topic>Energy Metabolism</topic><topic>Female</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>NTS</topic><topic>obesity</topic><topic>PBN</topic><topic>Receptors, Calcitonin - physiology</topic><topic>Solitary Nucleus - cytology</topic><topic>Solitary Nucleus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Wenwen</creatorcontrib><creatorcontrib>Gonzalez, Ian</creatorcontrib><creatorcontrib>Pan, Warren</creatorcontrib><creatorcontrib>Tsang, Anthony H.</creatorcontrib><creatorcontrib>Adams, Jessica</creatorcontrib><creatorcontrib>Ndoka, Ermelinda</creatorcontrib><creatorcontrib>Gordian, Desiree</creatorcontrib><creatorcontrib>Khoury, Basma</creatorcontrib><creatorcontrib>Roelofs, Karen</creatorcontrib><creatorcontrib>Evers, Simon S.</creatorcontrib><creatorcontrib>MacKinnon, Andrew</creatorcontrib><creatorcontrib>Wu, Shuangcheng</creatorcontrib><creatorcontrib>Frikke-Schmidt, Henriette</creatorcontrib><creatorcontrib>Flak, Jonathan N.</creatorcontrib><creatorcontrib>Trevaskis, James L.</creatorcontrib><creatorcontrib>Rhodes, Christopher J.</creatorcontrib><creatorcontrib>Fukada, So-ichiro</creatorcontrib><creatorcontrib>Seeley, Randy J.</creatorcontrib><creatorcontrib>Sandoval, Darleen A.</creatorcontrib><creatorcontrib>Olson, David P.</creatorcontrib><creatorcontrib>Blouet, Clemence</creatorcontrib><creatorcontrib>Myers, Martin G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Wenwen</au><au>Gonzalez, Ian</au><au>Pan, Warren</au><au>Tsang, Anthony H.</au><au>Adams, Jessica</au><au>Ndoka, Ermelinda</au><au>Gordian, Desiree</au><au>Khoury, Basma</au><au>Roelofs, Karen</au><au>Evers, Simon S.</au><au>MacKinnon, Andrew</au><au>Wu, Shuangcheng</au><au>Frikke-Schmidt, Henriette</au><au>Flak, Jonathan N.</au><au>Trevaskis, James L.</au><au>Rhodes, Christopher J.</au><au>Fukada, So-ichiro</au><au>Seeley, Randy J.</au><au>Sandoval, Darleen A.</au><au>Olson, David P.</au><au>Blouet, Clemence</au><au>Myers, Martin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>31</volume><issue>2</issue><spage>301</spage><epage>312.e5</epage><pages>301-312.e5</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems. [Display omitted] •NTS Calcr mediates food intake suppression but not aversive responses to sCT•Activating NTS Calcr neurons non-aversively suppresses feeding•These neurons act via non-CGRP PBN neurons•These neurons control long-term energy balance, not just short-term feeding While the hindbrain is often postulated to control only short-term parameters of feeding via circuits that mediate aversive responses when activated strongly, Cheng et al. have identified a hindbrain system that participates in the physiological control of energy balance and suppresses food intake without activating aversive systems or symptoms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31955990</pmid><doi>10.1016/j.cmet.2019.12.012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2020-02, Vol.31 (2), p.301-312.e5
issn 1550-4131
1932-7420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104375
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
anorexia
aversion
Body Weight
calcitonin receptor
Eating
Energy Metabolism
Female
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Neurons - cytology
Neurons - metabolism
NTS
obesity
PBN
Receptors, Calcitonin - physiology
Solitary Nucleus - cytology
Solitary Nucleus - metabolism
title Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcitonin%20Receptor%20Neurons%20in%20the%20Mouse%20Nucleus%20Tractus%20Solitarius%20Control%20Energy%20Balance%20via%20the%20Non-aversive%20Suppression%20of%20Feeding&rft.jtitle=Cell%20metabolism&rft.au=Cheng,%20Wenwen&rft.date=2020-02-04&rft.volume=31&rft.issue=2&rft.spage=301&rft.epage=312.e5&rft.pages=301-312.e5&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2019.12.012&rft_dat=%3Cproquest_pubme%3E2342359674%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342359674&rft_id=info:pmid/31955990&rft_els_id=S1550413119306771&rfr_iscdi=true